Advertisement

Applied Physics A

, 125:771 | Cite as

Investigation of new color-tunable up-conversion phosphors and their long-persistent luminescence properties for potential biomedical applications

  • Xinquan Zhou
  • Guifang JuEmail author
  • Tiansong Dai
  • Yang Li
  • Haoyi Wu
  • Yihua HuEmail author
Article
  • 100 Downloads

Abstract

Long-persistent phosphor and up-conversion particles used for optical imaging continue to interest researchers. The present work identifies an Er3+ doped micro-sized CSAO-CSO mixed material that exhibits both up-conversion and persistent luminescence. The cross-relaxation that occurs among Er3+ ions contributes to enhancing the up-conversion intensity. The Tm3+/Ho3+ co-doped strategy was used to induce tunable up-conversion colors. The cross-relaxation process corresponding to the energy transfer mechanism was investigated via the luminescence lifetimes of Er3+. Moreover, the persistent luminescence and thermo-luminescence properties of CSAO-CSO: Er3+ were also investigated systematically. Our results combine the fields of up-conversion and persistent luminescence, which may support other explorations of new kinds of long-persistent and up-conversion materials.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No.51972065).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

339_2019_3030_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1035 kb)

References

  1. 1.
    M.F. Kircher, U. Mahmood, R.S. King, R. Weissleder, L. Josephson, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63(23), 8122 (2003)Google Scholar
  2. 2.
    Q.L. de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 104(22), 9266 (2007)ADSGoogle Scholar
  3. 3.
    R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452, 580 (2008)ADSGoogle Scholar
  4. 4.
    D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624), 1434 (2003)ADSGoogle Scholar
  5. 5.
    G. Hong, J.T. Robinson, Y. Zhang, S. Diao, A.L. Antaris, Q. Wang, H. Dai, In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Edit. 51(39), 9818–9821 (2012)Google Scholar
  6. 6.
    E. Schröck, S.D. Manoir, T. Veldman, B. Schoell, J. Wienberg, M.A. Ferguson-Smith, Y. Ning, D.H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Ried, Multicolor spectral karyotyping of human chromosomes. Science 273(5274), 494 (1996)ADSGoogle Scholar
  7. 7.
    J. Yan, M.C. Estévez, J.E. Smith, K. Wang, X. He, L. Wang, W. Tan, Dye-doped nanoparticles for bioanalysis. Nano Today 2(3), 44–50 (2007)Google Scholar
  8. 8.
    J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41(3), 1323–1349 (2012)Google Scholar
  9. 9.
    F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38(4), 976–989 (2009)Google Scholar
  10. 10.
    T. Maldiney, A. Bessière, J. Seguin, E. Teston, S.K. Sharma, B. Viana, A.J.J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, C. Richard, The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418 (2014)ADSGoogle Scholar
  11. 11.
    Y. Li, M. Gecevicius, J. Qiu, Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45(8), 2090–2136 (2016)Google Scholar
  12. 12.
    F. Clabau, X. Rocquefelte, Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem. Mater. 17(15), 3904–3912 (2005)Google Scholar
  13. 13.
    T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133(30), 11810–11815 (2011)Google Scholar
  14. 14.
    G. Hong, J.C. Lee, J.T. Robinson, U. Raaz, L. Xie, N.F. Huang, J.P. Cooke, H. Dai, Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841 (2012)Google Scholar
  15. 15.
    G. Hong, S. Diao, J. Chang, A.L. Antaris, C. Chen, B. Zhang, S. Zhao, D.N. Atochin, P.L. Huang, K.I. Andreasson, C.J. Kuo, H. Dai, Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 8, 723 (2014)ADSGoogle Scholar
  16. 16.
    S. Diao, J.L. Blackburn, G. Hong, A.L. Antaris, J. Chang, J.Z. Wu, B. Zhang, K. Cheng, C.J. Kuo, H. Dai, Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Edit. 54(49), 14758–14762 (2015)Google Scholar
  17. 17.
    S. Diao, G. Hong, A.L. Antaris, J.L. Blackburn, K. Cheng, Z. Cheng, H. Dai, Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8(9), 3027–3034 (2015)Google Scholar
  18. 18.
    J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications. Chem. Rev. 115(1), 395–465 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Li, J. Lin, Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20, 6831 (2010)ADSGoogle Scholar
  20. 20.
    M. Haase, H. Schäfer, Upconverting nanoparticles. Angew. Chem. Int. Edit. 50(26), 5808–5829 (2011)Google Scholar
  21. 21.
    M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8(11), 3834–3838 (2008)ADSGoogle Scholar
  22. 22.
    Y. Liu, D. Tu, H. Zhu, X. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42(16), 6924–6958 (2013)Google Scholar
  23. 23.
    X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)Google Scholar
  24. 24.
    J.-C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34(12), 1048–1077 (2005)Google Scholar
  25. 25.
    G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.-H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4(11), 2191–2196 (2004)ADSGoogle Scholar
  26. 26.
    S.F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.K. Tung, D. Tank, R.H. Austin, In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans. Nano Lett. 6(2), 169–174 (2006)ADSGoogle Scholar
  27. 27.
    Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20(24), 4765–4769 (2008)Google Scholar
  28. 28.
    R. Naccache, F. Vetrone, V. Mahalingam, L.A. Cuccia, J.A. Capobianco, Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem. Mater. 21(4), 717–723 (2009)Google Scholar
  29. 29.
    J. Xu, D. Murata, J. Ueda, B. Viana, S. Tanabe, Toward rechargeable persistent luminescence for the first and third biological windows via persistent energy transfer and electron trap redistribution. Inorg. Chem. 57(9), 5194–5203 (2018)Google Scholar
  30. 30.
    D. Chen, Y. Chen, H. Lu, Z. Ji, A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg. Chem. 53(16), 8638–8645 (2014)Google Scholar
  31. 31.
    F. Liu, Y. Liang, Z. Pan, Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett. 113(17), 177401 (2014)ADSGoogle Scholar
  32. 32.
    F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–174 (2004)Google Scholar
  33. 33.
    G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161–5214 (2014)Google Scholar
  34. 34.
    H. Yamane, S. Abe, R. Tu, T. Goto, A ramsayite-type oxide, Ca2Sn2Al2O9. Acta Crystallogr. Sect. E Struct. Rep. Online 66, I72–U128 (2010)Google Scholar
  35. 35.
    E.L. Simmons, Diffuse reflectance spectroscopy: a comparison of the theories. Appl. Opt. 14(6), 1380–1386 (1975)ADSGoogle Scholar
  36. 36.
    J.H. Nobbs, Kubelka—Munk theory and the prediction of reflectance. Rev. Prog. Coloration 15(1), 66–75 (1985)Google Scholar
  37. 37.
    A. Zhou, F. Song, Y. Han, F. Song, D. Ju, X. Wang, Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF4: yb3+/Er3+, Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing. CrystEngComm 20(14), 2029–2035 (2018)Google Scholar
  38. 38.
    T. Pang, W. Lu, W. Shen, Chromaticity modulation of upconversion luminescence in CaSnO3: Yb3+, Er3+, Li+ phosphors through Yb3+ concentration, pumping power and temperature. Phys. B 502, 11–15 (2016)ADSGoogle Scholar
  39. 39.
    V.O. Gordo, Y.T. Arslanli, A. Canimoglu, M. Ayvacikli, Y.G. Gobato, M. Henini, N. Can, Visible to infrared low temperature luminescence of Er3+, Nd3+ and Sm3+ in CaSnO3 phosphors. Appl. Radiat. Isot. 99, 69–76 (2015)Google Scholar
  40. 40.
    C. Mi, J. Wu, Y. Yang, B. Han, J. Wei, Efficient upconversion luminescence from Ba5Gd8Zn4O21: Yb3+, Er3+ based on a demonstrated cross-relaxation process. Sci. Rep. 6, 22545 (2016)ADSGoogle Scholar
  41. 41.
    S. Sinha, M.K. Mahata, K. Kumar, Enhancing the upconversion luminescence properties of Er3+–Yb3+ doped yttrium molybdate through Mg2+ incorporation: effect of laser excitation power on temperature sensing and heat generation. New J. Chem. 43(15), 5960–5971 (2019)Google Scholar
  42. 42.
    M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. 61(5), 3337–3346 (2000)ADSGoogle Scholar
  43. 43.
    E.M. Chan, G. Han, J.D. Goldberg, D.J. Gargas, A.D. Ostrowski, P.J. Schuck, B.E. Cohen, D.J. Milliron, Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett. 12(7), 3839–3845 (2012)ADSGoogle Scholar
  44. 44.
    R. Chen, on the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40(2), 570–585 (1969)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringGuangdong University of TechnologyGuangzhouChina

Personalised recommendations