Advertisement

Applied Physics A

, 125:786 | Cite as

First-principle calculation of the pressure-induced variation in the formation energy of iron defect in Si1−xGex alloy

  • Mohammed A. H. KhalafallaEmail author
  • Al-Waleed A. Adlan
Article
  • 38 Downloads

Abstract

We report on the systematic first-principle calculations of the formation volumes of a single Fe (neutral iron) in Si1−xGex at various Ge compositions (x = 4.7–20.3%). The formation volume was defined as the derivative of the Fe formation energy with respect to the pressure within 0–0.8 GPa. Interestingly, the formation volume was found to be equivalent to the difference between the volumes of the relaxed bulk and defective structures. The formation volume versus ‘x’ exhibited a nonlinear pattern with regions of Fe-induced volume contraction (within x < 50%, i.e., Si-rich region) and expansion (x > 50%, i.e., Ge-rich region). These results explain the reported observation that Fe prefers Si-rich environment and that Ge does not favor to be a nearest neighbor to Fe.

Notes

Acknowledgements

The authors would like to thank the Africa City of Technology (Sudan) for access to their high performance computing facilities to compute some of our structures.

References

  1. 1.
    I. Yonenaga, in Reference Module in Materials Science and Materials Engineering. Six Ge1−x Bulk Crystals (Elsevier, Amsterdam, 2016).  https://doi.org/10.1016/B978-0-12-803581-8.03687-0 Google Scholar
  2. 2.
    Y. Shiraki, N. Usami, Silicon-Germanium (SiGe) Nanostructures: Production, Properties and Applications in Electronics (Elsevier, Amsterdam, 2011)CrossRefGoogle Scholar
  3. 3.
    A. Mesli et al., Iron in relaxed Si1 x Gex alloy: band gap related levels, diffusion, and alloying effects. Phys. Rev. B 66(4), 045206 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M.A.H. Khalafalla, A. Mesli, First principle calculations of iron and iron–boron transition levels in Si1−xGex alloy. Eur. Phys. J. B 90(6), 103 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    K. Nauka, T.I. Kamins, Deep state defects in strained and relaxed epitaxial Si1−xGex on Si introduced by 3d transition metal and 5d noble metal impurities. Phys. B Condens. Matter 273–274, 603–607 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C. Claeys, E. Simoen, in Metal Impurities in Silicon-and Germanium-Based Technologies. Modeling of Metal Properties in Si, Si1−xGex and Ge (Springer, New York, 2018), pp. 389–433Google Scholar
  7. 7.
    A. Walsh, A.A. Sokol, C.R.A. Catlow, Free energy of defect formation: thermodynamics of anion Frenkel pairs in indium oxide. Phys. Rev. B 83(22), 224105 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Carvalho, J. Coutinho, R. Jones, M. Barroso, J. Goss, P. Briddon, Density-functional theory study of interstitial iron and its complexes with B and Al in dilute SiGe alloys. Mater. Sci. Semicond. Process. 11(5–6), 332–335 (2008)CrossRefGoogle Scholar
  9. 9.
    A. van de Walle et al., Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Van De Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a user guide. Calphad 26(4), 539–553 (2002)CrossRefGoogle Scholar
  11. 11.
    Alloy Theoretic Automated Toolkit (ATAT) Home Page. [Online]. https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/. Accessed 09 Jul 2019
  12. 12.
    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43(6), 3161–3164 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)CrossRefGoogle Scholar
  14. 14.
    R.G. Parr, in Horizons of Quantum Chemistry, ed. by K. Fukui, B. Pullman. Density Functional Theory of Atoms and Molecules, vol. 3 (Internationale Des Sciences Moléculaires Quantiques Science, Springer, Dordrecht, 1980)Google Scholar
  15. 15.
    J.E. Northrup, S. Zhang, Dopant and defect energetics: Si in GaAs. Phys. Rev. B 47(11), 6791 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    G. Bachelet, D. Hamann, M. Schlüter, Pseudopotentials that work: from H to Pu. Phys. Rev. B 26(8), 4199 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49(23), 16223 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Y.G. Gogotsi, A. Kailer, K.G. Nickel, Pressure-induced phase transformations in diamond. J. Appl. Phys. 84(3), 1299–1304 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    H. Warlimont, W. Martienssen, Springer Handbook of Materials Data (Springer, New York, 2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceTaibah University (Yanbu Branch)YanbuKingdom of Saudi Arabia
  2. 2.Department of Physics, College of ScienceKing Faisal UniversityAldamamKingdom of Saudi Arabia
  3. 3.Africa City of TechnologyKhartoumSudan

Personalised recommendations