Advertisement

Applied Physics A

, 125:743 | Cite as

Effect of substrate temperature, laser energy and post-deposition annealing on the structural, morphological and optical properties of laser-ablated perovskite BaSnO3 films

  • Jibi John
  • S. Suresh
  • S. R. Chalana
  • V. P. Mahadevan PillaiEmail author
Article
  • 140 Downloads

Abstract

Perovskite BaSnO3 thin films suitable for excitonic solar cell applications were deposited on quartz substrate by pulsed-laser ablation method. The effect of various deposition parameters on the structural, morphological and optical properties is systematically studied by various characterization techniques. Phase-pure films with cubic crystalline nature were evolved at a substrate temperature of 600 °C with a laser energy of 60 mJ and post-deposition annealing further improved the structural purity and optical quality of the films. An exponential growth in film thickness was observed with increasing laser energy in which Stranski–Krastnov growth mechanism dominated. Chemical states of BaSnO3 were confirmed from XPS analysis. The deposited films present luminescence in the visible region at 452 nm, 480 nm and 580 nm wavelength.

Notes

Acknowledgements

The authors would like thank to SICC, University of Kerala, for providing the XPS and AFM characterization facilities of the samples.

References

  1. 1.
    I. Beigi, F.J. Walker, S.W. Cheong, K.M. Rabe, C.H. Ahn, APL Mater. 3, 062510 (2015)ADSGoogle Scholar
  2. 2.
    C.H. Ahn, J.M. Triscone, J. Mannhart, Nature 424, 1015 (2003)ADSGoogle Scholar
  3. 3.
    O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51(7), 22 (1998)Google Scholar
  4. 4.
    B.N. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, G. Wagner, Appl. Phys. Lett. 86, 091904 (2005)ADSGoogle Scholar
  5. 5.
    H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, Paris W. Barnes, P.M. Woodward, Chem. Mater. (2013).  https://doi.org/10.1021/cm4019309 CrossRefGoogle Scholar
  6. 6.
    T. Maekawa, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 416, 214–217 (2006)Google Scholar
  7. 7.
    M.G. Smith, J.B. Goodenough, A. Manthiram, R.D. Taylor, W. Peng, C.W. Kimbal, J. Solid State Chem. 98, 181 (1992)ADSGoogle Scholar
  8. 8.
    G. Larramona, C. Gutierrez, M.R. Nunes, F.M.A. da Costa, J. Chem. Soc. Faraday Trans. 85, 907 (1989)Google Scholar
  9. 9.
    J. Kim, U. Kim, H.M. Kim, T.H. Kim, H.S. Mun, B.G. Jeon, K.T. Hong, W.J. Lee, C. Ju, K.H. Kim, K. Char, Appl. Phys. Express 5, 061102 (2012)ADSGoogle Scholar
  10. 10.
    H.F. Wang, Q.Z. Liu, F. Chen, G.Y. Gao, W. Wu, X.H. Chen, J. Appl. Phys. 101, 106105 (2007)ADSGoogle Scholar
  11. 11.
    X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, S.W. Cheong, Appl. Phys. Lett. 100, 172112 (2012)ADSGoogle Scholar
  12. 12.
    T. Maekawa, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 416(1), 214–217 (2006)Google Scholar
  13. 13.
    R. Vivekanandan, T.R.N. Kutty, Ceram. Int. 14(4), 207–216 (1988)Google Scholar
  14. 14.
    T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, O. Ishiyama, J. Mater. Sci. 30, 1556–1560 (1995)ADSGoogle Scholar
  15. 15.
    S.S. Shin, J.S. Kim, J.H. Suk, K.D. Lee, D.W. Kim, J.H. Park, I.S. Cho, K.S. Hong, J.Y. Kim, ACS Nano 7, 1027–1035 (2013)Google Scholar
  16. 16.
    S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. Seok, Science 356, 67–171 (2017).  https://doi.org/10.1126/science.aam6620 CrossRefGoogle Scholar
  17. 17.
    S. Suresh, T.G. Deepak, C. Ni, C.N.O. Sreekala, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, New J. Chem. 40, 6228–6237 (2016).  https://doi.org/10.1039/C6NJ01133K CrossRefGoogle Scholar
  18. 18.
    S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Dalton Trans. 47, 4685–4700 (2018).  https://doi.org/10.1039/C7DT04825D CrossRefGoogle Scholar
  19. 19.
    S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, J. Colloid Interface Sci. 524, 236–244 (2018)ADSGoogle Scholar
  20. 20.
    S. Upadhyay, O. Parkash, D. Kumar, Mater. Lett. 49, 251–255 (2001)Google Scholar
  21. 21.
    Q. Liu, J. Dai, Y. Zhang, H. Li, B. Li, Z. Liu, W. Wang, J. Alloy. Compd. 655, 389–394 (2016)Google Scholar
  22. 22.
    A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloy. Compd. 509, 1830–1835 (2011)Google Scholar
  23. 23.
    H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, Phys. Rev. B 86, 165205 (2012)ADSGoogle Scholar
  24. 24.
    S. Sallis, D.O. Scanlon, S.C. Chae, N.F. Quackenbush, D.A. Fischer, J.C. Woicik, J.H. Guo, S.W. Cheong, L.F.J. Piper, Appl. Phys. Lett. 103, 042105 (2013)ADSGoogle Scholar
  25. 25.
    P.V. Wadekar, J. Alaria, M. O’Sullivan, N.L.O. Flack, T.D. Manning, L.J. Phillips, K. Durose, O. Lozano, S. Lucas, J.B. Claridgeet, Appl. Phys. Lett. 105, 052104 (2014)ADSGoogle Scholar
  26. 26.
    D.G. Schlom, J.H. Haeni, J. Lettieri, C.D. Theis, W. Tian, J.C. Jiang, X.Q. Pan, Mater. Sci. Eng. B 87, 282 (2001)Google Scholar
  27. 27.
    H. Paik, Z. Chen, E. Lochocki, A. Seidner, A. Verma, N. Tanen, J. Park, M. Uchida, S. Shang, B. Zhou, M. Brützam, R. Uecker, Z.K. Liu, D. Jena, K.M. Shen, D.A. Muller, D.G. Schlom, APL Mater. 5, 116107 (2017)ADSGoogle Scholar
  28. 28.
    A.P.N. Tchiomo, W. Braun, B.P. Doyle, W. Sigle, P. Aken, J. Mannhart, P. Ngabonziza APL Mater. 7, 041119 (2019).  https://doi.org/10.1063/1.5094867 CrossRefGoogle Scholar
  29. 29.
    S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, APL Mater. 4, 016106 (2016).  https://doi.org/10.1063/1.4939657 ADSCrossRefGoogle Scholar
  30. 30.
    J. John, S.R. Chalana, R. Prabhu, V.P.M. Pillai, Appl. Phys. A 125, 155 (2019).  https://doi.org/10.1007/s00339-019-2432-0 ADSCrossRefGoogle Scholar
  31. 31.
    M. Wu, S. Yu, L. He, L. Yang, W. Zhang, Nanoscale Res. Lett. 11, 369 (2016).  https://doi.org/10.1186/s11671-016-1579-2 ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Cho, T. Onozato, M. Wei, A. Sanchela, H. Ohta, APL Mater. 7, 022507 (2019).  https://doi.org/10.1063/1.5054154 CrossRefGoogle Scholar
  33. 33.
    F.Y. Fan, W.Y. Zhao, T.W. Chen, J.M. Yan, J.P. Ma, L. Guo, G.Y. Gao, F.F. Wang, R.K. Zheng, Appl. Phys. Lett. 113, 202102 (2018).  https://doi.org/10.1063/1.5063538 ADSCrossRefGoogle Scholar
  34. 34.
    Q.Z. Liu, F. Jin, G.Y. Gao, B. Li, Y.X. Zhang, Q.C. Liu, J. Alloys Compd. 684, 125 (2016)Google Scholar
  35. 35.
    B. Li, Y.X. Zhang, Z.L. Liu, L. Geng, J. Alloys Compd. 708, 1117 (2017)Google Scholar
  36. 36.
    Q.Z. Liu, J.M. Dai, H. Li, B. Li, Y.X. Zhang, K. Dai, S. Chen, J. Alloys Compd. 647, 959 (2015)Google Scholar
  37. 37.
    S. Upadhyay, O. Parkash, J. Mater. Sci. Lett. 16, 1330–1332 (1997)Google Scholar
  38. 38.
    B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, H. Sreemoolanadhan, Mater. Res. Express (2018).  https://doi.org/10.1088/2053-1591/aacb12 CrossRefGoogle Scholar
  39. 39.
    M. Mishra, P. Kuppusami, T.N. Sairam, A. Singh, E. Mohandas, Appl. Surf. Sci. 257, 7665–7670 (2011)ADSGoogle Scholar
  40. 40.
    D. Beena, K.J. Lethy, R. Vinodkumar, V.P.M. Pillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334–8342 (2009)ADSGoogle Scholar
  41. 41.
    W.K. Lee, H.Y. Wong, K.Y. Chan, Appl. Phys. A 100, 561 (2010).  https://doi.org/10.1007/s00339-010-5875-x ADSCrossRefGoogle Scholar
  42. 42.
    S. Murugesan, P. Kuppusami, N. Parvathavarthini, E. Mohandas, Surf. Coat. Technol. 201, 7713–7719 (2007)Google Scholar
  43. 43.
    M. Arif, A. Sanger, P.M. Vilarinho, Arunsingh. J. Electron. Mater. 47, 7 (2018)Google Scholar
  44. 44.
    B.D. Cullity, S.R. Stock (eds) in Elements of X-ray diffraction in diffraction III: real samples, 3rd edn. (Addison-Wesley, Boston, Chap.5, pp 170, 1978)Google Scholar
  45. 45.
    C. Moditswe, C.M. Muiva, P. Luhanga, A. Juma, Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.01.026 CrossRefGoogle Scholar
  46. 46.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)Google Scholar
  47. 47.
    R. Kumar, G. Kumar, A. Umar, J. Nanosci. Nanotechnol. 14, 2 (2014)Google Scholar
  48. 48.
    J. Tauc, Amorphous and liquid semiconductors (Plenum, London, 1974)Google Scholar
  49. 49.
    J.I. Pankove, Optical processes in semiconductors (Dover Publications, New York, 1971)Google Scholar
  50. 50.
    B.S. Joo, Y.J. Chang, L. Moreschini, A. Bostwick, E. Rotenberg, M. Han, Curr. Appl. Phys. 17, 595–599 (2017)ADSGoogle Scholar
  51. 51.
    Scott A. Chambers, T.C. Kaspar, A. Prakash, G. Haugstad, B. Jalan, Appl. Phys. Lett. 108, 152104 (2016).  https://doi.org/10.1063/1.4946762 ADSCrossRefGoogle Scholar
  52. 52.
    P. Nithyadharseni, M.V. Reddy, K.I. Ozoemena, F.I. Ezema, R.G. Balakrishna, B.V.R. Chowdari, J. Electrochem. Soc. 163(3), A540–A545 (2016)Google Scholar
  53. 53.
    F. Zhong, H. Zhuang, Q. Guc, J. Long, RSC Adv. 6, 42474 (2016)Google Scholar
  54. 54.
    H.M.I. Jaim, S. Lee, X. Zhang, I. Takeuchi, Appl. Phys. Lett. 111, 172102 (2017)ADSGoogle Scholar
  55. 55.
    W. Ahmad, D. Liu, W. Ahmad, Y. Wang, P. Zhang, T. Zhang, H. Zheng, Z.D. Chen, S. Li, IEEE J. Photovoltaics (2018)Google Scholar
  56. 56.
    M. Kwoka, M. Krzywiecki, Beilstein J. Nanotechnol. 8, 514–521 (2017)Google Scholar
  57. 57.
    W.Y. Chen, J.S. Jeng, J.S. Chena, ECS Solid State Lett. 1 (5) (2012)Google Scholar
  58. 58.
    U. Kumar, MdJ Ansaree, S. Upadhyay, Process. Appl. Ceram 11(3), 177–184 (2017)Google Scholar
  59. 59.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data 34(4), 1559–2259 (2005)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jibi John
    • 1
  • S. Suresh
    • 1
    • 2
  • S. R. Chalana
    • 1
  • V. P. Mahadevan Pillai
    • 1
    Email author
  1. 1.Department of OptoelectronicsUniversity of KeralaThiruvananthapuramIndia
  2. 2.Department of ElectronicsSree Ayyappa CollegeChengannurIndia

Personalised recommendations