Advertisement

Applied Physics A

, 125:811 | Cite as

Microstructural analysis, dielectric properties and room temperature magnetic ordering of Pr-doped ZnO nanoparticles

  • N. Bhakta
  • A. Bandyopadhyay
  • A. Bajorek
  • P. K. ChakrabartiEmail author
Article
  • 6 Downloads

Abstract

Praseodymium (Pr ion)-doped zinc oxide nanoparticles (Zn1−xPrxO, x = 0.00, 0.02, 0.05) were prepared by chemical co-precipitation method. The as-dried samples were annealed at 400 °C for 6 h duration in vacuum (10−2 mm of Hg). Crystallographic phase formation of each prepared sample is determined by matching the peak positions of the observed X-ray diffractograms with those of JCPDS file no. 76-0206. Rietveld refinement of the XRD data is also carried out to confirm the desired crystallographic phase. Analysis of FTIR spectroscopic data confirms that no unwanted chemical bonding related to impurity is present in the sample. Intrinsic defects are investigated by observing photoluminescence spectroscopy of each sample. Due to the presence of bound magnetic polaron interaction mediated by defects like oxygen vacancy and zinc vacancy, both 2 and 5% Pr-doped ZnO nanoparticles show unsaturated hysteretic magnetization versus magnetic field loop at room temperature along with the presence of paramagnetic contribution. The presence of paramagnetic and ferromagnetic contribution confirmed from the nature of variation of magnetization vs. temperature curves. Dielectric measurements of each sample show that the substitution of dopant enhances the dielectric constant of the host system of ZnO and reduces the dielectric loss. AC electrical conductivity of the doped sample is lowered compared to that of ZnO which indicates that the doped samples would be useful for dielectric applications. The improved magnetic and dielectric properties of the doped samples open a new area for application in spintronic device as dilute magnetic dielectric.

Notes

Acknowledgements

The authors wish to acknowledge WBDST for financial assistance (Memo: 292(SANC)/ST/P/S and T/16G-28/2017, Dated: 28.03.2018). Authors also wish to acknowledge UGC, Govt. of India, for CAS-II (No: F.530/20/CAS-II/2018 (SAP-I), Dated: 25.07.2018). The authors wish to acknowledge UGC-DAE, CSR, Kolkata Center, for providing photoluminescence spectroscopy and magnetic measurement facility of the present sample.

References

  1. 1.
    S.L. Gurmeet, S. Jaspal, N.K. Verma, J. Mater. Sci. Mater. Electron. 24, 3611–3616 (2013)CrossRefGoogle Scholar
  2. 2.
    C.-Y. Kung, S.-L. Young, H.-Z. Chen, M.-C. Kao, L. Horng, Y.-T. Shih et al., Nanoscale Res. Lett. 7, 372 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D. Guruvammal, S. Selvaraj, S. Meenakshi Sundar, J. Magn. Magn. Mater. 452, 335–342 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    R. Shalendra-Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull. 59, 377–381 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang et al., J. Alloy. Compd. 604, 281–285 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Tiwari, S. Doke, A. Lohar, S. Mahamuni, C. Kamal, A. Chakrabarti, R.J. Choudhary, P. Mondal, S.N. Jha, D. Bhattacharyya, J. Phys. Chem. Solids 90, 100–113 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Oshio, K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, J. Appl. Phys. 103, 093717 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    N. Bhakta, T. Inamori, R. Shirakami, Y. Tanioku, K. Yoshimura, P.K. Chakrabarti, Mater. Res. Bull. 104, 6–14 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Long, H. Zhou, D. Gao, W. Cangji, M. Gao, J. Shao, J. Qi, Mater. Chem. Phys. 145, 510–514 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Bandyopadhyay, S. Modak, S. Acharya, A.K. Deb, P.K. Chakrabarti, Solid State Sci. 12, 448–454 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bandyopadhyay, N. Bhakta, S. Sutradhar, B.J. Sarkar, A.K. Deb, S. Kobayashi, K. Yoshimura, P.K. Chakrabarti, RSC Adv. 6, 101818–101826 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Bandyopadhyay, A.K. Deb, K. Mukhopadhyay, S.K. Roy, P.K. Chakrabarti, J. Mater. Sci. 47, 2284–2293 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Franco Jr., H.V.S. Pessoni, M.P. Soares, J. Magn. Magn. Mater. 355, 325–330 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Dakhel, M. El-Hilo, J. Appl. Phys. 107, 123905 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, V.P.S. Awana, J. Mater. Sci. Mater. Electron. 24, 5102–5110 (2013)CrossRefGoogle Scholar
  16. 16.
    A.G. El Hachimi, H. Zaari, M. Hamedoun, A. Benyoussef, A. El Kenz, O. Mounkachi, J. Magn. Magn. Mater. 444, 416–420 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. El Kenz, J. Rare Earths 32, 715–721 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Ungureanu, H. Schmidt, Q. Xu, H. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Superlatt. Microstruct. 42, 231–235 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C. Jayachandraiah, G. Krishnaiah, J. Mater. Sci. 52, 7058–7066 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    N. Ohashi, S. Mitarai, O. Fukunaga, J. Electroceram. 4, 61–68 (1999)CrossRefGoogle Scholar
  21. 21.
    J.S. Malhotra, A.K. Singh, R. Khosla, S.K. Sharma, G. Sharma, S. Kumar, J. Mater. Sci. Mater. Electron. 29, 3850–3855 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Mitra, A.S. Mahapatra, A. Mallick, A. Shaw, N. Bhakta, P.K. Chakrabarti, Ceram. Int. 44, 4442–4449 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, A.K. Ghosh, J. Appl. Phys. 114, 164321 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    S. Fabbiyola, V. Sailaja, L. John Kennedy, M. Bououdina, J. Judith Vijaya, J. Alloys Compd. 694, 522–531 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Srinet, P. Varshney, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S.K. Sharma, Ceram. Int. 39, 6077–6085 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Naseem, W. Khan, S. Khan, S. Husain, A. Ahmad, J. Magn. Magn. Mater. 447, 155–166 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, D. Xue, J. Phys. Chem. C 114, 13477–13481 (2010)CrossRefGoogle Scholar
  28. 28.
    X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B 388, 145–152 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Zhong, Y. Li, M. Tariq, Y. Hu, W. Li, M. Zhu, H. Jin, Y. Li, J. Alloys Compd. 675, 286–291 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Zhong, S. Wang, Y. Li, H. Yemin, M. Zhu, H. Jin, Y. Li, H. Zhang, H. Zhao, Ceram. Int. 41, 451–457 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Hastir, N. Kohli, R. Chand Singh, J. Phys. Chem. Solids 105, 23–34 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    F.H. Aragón, I. Gonzalez, J.A.H. Coaquira, P. Hidalgo, H.F. Brito, J.D. Ardisson, W.A.A. Macedo, P.C. Morais, J. Phys. Chem. C 119, 8711–8717 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Andana, M. Piumetti, S. Bensaid, N. Russo, Nanoscale Res. Lett. 11, 278 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy, A.N. Mallika, J. Adv. Ceram. 3, 260–265 (2013)CrossRefGoogle Scholar
  35. 35.
    C.C. Lin, S.L. Young, C.Y. Kung, L. Horng, H.Z. Chen, M.C. Kao, Y.T. Shih, C.R. Ou, Vacuum 87, 178–181 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    V. Mihalache, M. Cernea, I. Pasuk, Curr. Appl. Phys. 17, 1127–1135 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    S. Muthu Kumaran, R. Gopala Krishnan, J. Sol. Gel. Sci. Technol. 62, 193–200 (2012)CrossRefGoogle Scholar
  38. 38.
    N.S. Norberg, D.R. Gamelin, J. Phys. Chem. B 109, 20810 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Muthu Kumaran, R. Gopala krishnan, Opt. Mater. 34, 1946–1953 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Sambasivam, S.B. Kim, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, T.K. Song, Curr. Appl. Phys. 10, 1383–1386 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    N. Fifere, A. Airinei, D. Timpu, A. Rotaru, L. Sacarescu, L. Ursu, J. Alloy. Compd. 757, 60–69 (2018)CrossRefGoogle Scholar
  42. 42.
    K. Badreddine, I. Kazah, M. Rekaby, R. Awad, J. Nanomater. 2018, 1–11 (2018)CrossRefGoogle Scholar
  43. 43.
    I. Bantounas, S. Goumri-Said, M.B. Kanoun, A. Manchon, I. Roqan, U. Schwingenschlogl, J. Appl. Phys. 109, 083929 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    N. Sanchez, S. Gallego, M. Munoz, Phys. Rev. Lett. 101, 067206 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S. Gallego, J.I. Beltran, J. Cerda, M.C. Munoz, J. Phys. Condens. Matter. 17, L451–L457 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    N. Bhakta, A. Das, D. Das, K. Yoshimura, A. Bajorek, P.K. Chakrabarti, Mater. Chem. Phys. 227, 332–339 (2019)CrossRefGoogle Scholar
  47. 47.
    T. Ali, A. Ahmed, M. Naseemsiddique, P. Tripathi, Phys. B Phys. Condens. Mater. 534, 1–4 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    A. Jaiswal, R. Das, T. Maity, P. Poddar, J. Appl. Phys. 110, 124301 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    C. Jayachandraiah, G. Krishnaiah, K. Sivakumar, A. Divya, J. Mater. Sci. Mater. Electron. 29, 18159–18166 (2018)CrossRefGoogle Scholar
  50. 50.
    M.L. Dinesha, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Indian J. Phys. 87, 147–153 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    X. Xie, L. Hao, H. Wang, G. Lin, H. Zhu, J. Appl. Phys. 121, 123904 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    S. Sagadevan, J. Podder, Soft Nanosci. Lett. 5, 55–64 (2015)CrossRefGoogle Scholar
  53. 53.
    N. Bhakta, P.K. Chakrabarti, Appl. Phys. A 73, 125 (2019)Google Scholar
  54. 54.
    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479–486 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Bhakta
    • 1
  • A. Bandyopadhyay
    • 2
  • A. Bajorek
    • 3
    • 4
  • P. K. Chakrabarti
    • 1
    Email author
  1. 1.Solid State Research Laboratory, Department of PhysicsBurdwan UniversityBurdwanIndia
  2. 2.Department of PhysicsUniversity of Gour BangaMaldaIndia
  3. 3.A. Chełkowski Institute of PhysicsUniversity of Silesia in KatowiceChorzowPoland
  4. 4.Silesian Center for Education and Interdisciplinary ResearchUniversity of Silesia in KatowiceChorzowPoland

Personalised recommendations