Applied Physics A

, 125:672 | Cite as

Structural, stoichiometric and optical constants of crystalline undoped lead iodide films prepared by the flash-evaporation method

  • Mousa M. Abdul-Gader JafarEmail author
  • Mahmoud H. Saleh
  • Tariq M. Al-Daraghmeh
  • Mais Jamil A. Ahmad
  • Maryam A. AbuEid
  • Nidal M. Ershaidat
  • Basim N. Bulos


The flash-evaporation method was used to deposit several thin films (1, 1.2, and 1.35 µm thick) of undoped lead iodide on glass slides held at \(150\) °C and \(200\) °C. Their X-ray diffraction patterns, scanning electron microscope micrographs, and energy-dispersive spectroscopy spectra revealed crystalline hexagonal 2H-polytypic structure and high stoichiometry (\({\text{PbI}}_{x} ;x \cong 1.9\)). Their as-measured normal-incidence transmittance \(T_{\text{exp}} (\lambda)\)–wavelength \(\lambda\) curves exhibited above a specific wavelength \(\lambda_{{\text{c}}} \approx 520{\text{ nm}}\) and many well-resolved interference-fringe maxima and minima, indicating good film uniformity. Below \(\lambda_{{\text{c}}}\), these \(T_{\text{exp}} (\lambda) - \lambda\) curves declined sharply toward \(T_{\text{exp}} (\lambda) \cong 0\), signifying high film crystallinity. The \(\lambda\) dependency of optical constants \(n(\lambda)\) and \(\kappa (\lambda)\) retrieved from numeric iterative curve fitting of \(T_{\text{exp}} (\lambda) - \lambda\) data to theoretical \(T_{{{\text{theor}}}} (\lambda)\) formula describe an air-supported {film/substrate} structure, combined with O’Leary–Johnson–Lim (OJL) interband transition dispersion model and a set of harmonic-like oscillator dispersion formulas. The retrieved bandgap energy \(E_{{\text{g}}}^{{{\text{opt}}}}\) and band-tail breadth \(\gamma\) were around \(2.4\,{\text{ eV}}\) and \(100\,{\text{ meV}}\), respectively. The determined \(n(\lambda) - \lambda\) data gave best curve fits to the Wemple–DiDomenico (WDD) equation with reasonable bandgap energy parameter \(E_{{\text{o}}} \cong 3.8\,{\text{ eV}} \cong 1.6\,E_{{\text{g}}}^{{{\text{opt}}}}\), single-oscillator energy strength \(E_{{\text{d}}} \cong 18\,{\text{ eV}}\) and static index of refraction \(n_{{\text{o}}} \cong 2.4\). The calculated optical absorption coefficient \(\alpha (\lambda) = 4{\uppi }\kappa (\lambda)/\lambda\) was found to obey the direct interband transition with bandgap energy \(E_{{\text{g}}} \cong 2.45\,{\text{ eV}}\) in the absorption edge region, near which the curve fits of \(\alpha (\lambda)\) to Urbach formula gave an Urbach tail parameter \({\Gamma }_{{\text{U}}}\) of \(45\,{\text{ meV}}\), consistent with the results of numerical analysis of \(T_{\text{exp}} (\lambda) - \lambda\) curves. The film thickness and substrate temperature had a slight effect on the determined optical parameters.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M.A. AbuEid, A Study of Structural, Composition and Optical Properties of Lead-Iodide Based Perovskite Thin Films Fabricated Under Various Experimental Conditions. M.Sc. Thesis, University of Jordan, Amman, Jordan, 2018Google Scholar
  2. 2.
    R.I. Dawood, A.J. Forty, Philos. Mag. 7, 1633–1651 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    H.K. Henisch, C. Srinivasagopalan, Solid State Commun. 4, 415–418 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    V. Deich, M. Roth, Nucl. Instr. Meth. A 380, 169–172 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    V. Aravamuldhan, Flat Panel Digital X-ray Image Detectors. M.Sc. Thesis, University of Regina, Saskatchewan, Canada, 2003Google Scholar
  6. 6.
    J.C. Lund, K.S. Shah, M.R. Squillante, L.P. Moy, F. Sinclair, G. Entine, Nucl. Inst. Meth. A 283, 299–302 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    A. Sengubta, Synthesis, Optical Properties and Ultrafast Electronic Relaxation of Layered Semiconductors Nanoparticles: PbI2, BiI3, Bi2S3. PhD Dissertation, University of California, Santa Cruz, 2000Google Scholar
  8. 8.
    R. Minder, G. Ottaviani, C. Canali, J. Phys. Chem. Solids 37, 417–424 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    K.S. Shah, F. Olschner, L.P. Moy, P. Bennett, M. Misra, J. Zhang, M.R. Squillante, J.C. Lund, Nucl. Instr. Meth. A 380, 266–270 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    R. Ahuja, H. Arwin, A. Ferreira da Silva, C. Persson, J.M. Osorio-Guillen, J. Souza de Almeida, C. Moyses Araujo, E. Veje, N. Veissid, C.Y. An, I. Pepe, B. Johansson, Journal of applied physics 92, 7219–7224 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    E.R. Manoel, M.C.C. Custódio, F.E.G. Guimarães, R.F. Bianchi, A.C. Hernandes, Mater. Res. 2, 75–79 (1999)CrossRefGoogle Scholar
  12. 12.
    N. Veissid, C.Y. An, A. Ferreira da Silva, J.I. Pinto de Souza, Mater. Res. 2, 279–281 (1999)CrossRefGoogle Scholar
  13. 13.
    R. Ahuja, A. Ferreira da Silva, C. Persson, J.M. Osorio-Guillen, I. Pepe, K. Jarrendahl, O.P.A. Lindqvist, N.V. Edwards, Q.B. Johansson, J. Appl. Phys. 91, 2099–2103 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    D.S. Bhavsar, K.B. Saraf, J. Mater. Sci. Mater. Electron. 14, 195–198 (2003)CrossRefGoogle Scholar
  15. 15.
    M.H. Saleh, Study of Structural, Optical and Electrical Properties of PbI2 Thin Films Prepared by Flash-Evaporation Technique. Ph.D. Thesis, University of Jordan, Amman, Jordan, 2011Google Scholar
  16. 16.
    M. Shkir, H. Abbas, Z.R. Khan, J. Phys. Chem. Solids 73, 1309–1313 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Ghosh, S. Bandyopadhyay, K.K. Roy, S. Kar, A.K. Lahiri, A.K. Maiti, K. Goswami, Cryst. Res. Technol. 43, 959–963 (2008)CrossRefGoogle Scholar
  18. 18.
    I.A. Kariper, Opt. Rev. 23, 401–408 (2016)CrossRefGoogle Scholar
  19. 19.
    S.S. Jamil, A.M. Mousa, M.A. Mohammad, K.M. Thajeel, Eng. Tech. J. 29, 531–543 (2011)Google Scholar
  20. 20.
    D. Acuna, B. Krishnan, S. Shaji, S. Sepulveda, J.L. Menchaca, Bull. Mater. Sci. 39, 1453–1460 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Kumar, S. Sharma, Int. J. Eng. Res. Technol. 2, 3593–3597 (2013)Google Scholar
  22. 22.
    H. Agrawal, A.G. Vedeshwar, V.K. Saraswat, J. Nano Res. 24, 1–6 (2013)CrossRefGoogle Scholar
  23. 23.
    D.S. Bhavsar, Adv. Appl. Sci. Res. 2, 92–97 (2011)Google Scholar
  24. 24.
    M.H. Saleh, Jordan J. Phys. 11, 181–191 (2018)Google Scholar
  25. 25.
    T.M. Al-Daraghmeh, Study of Some Electrical Properties of Undoped Lead Iodide Thin Films Deposited by Flash-Evaporation Method at Substrate Temperatures Between 150 °C and 200 °C. M.Sc. Thesis, University of Jordan, Amman, Jordan, 2013Google Scholar
  26. 26.
    M.H. Saleh, M.M.A.-G. Jafar, B.N. Bulos, T.M.F. Al-Daraghmeh, Appl. Phys. Res. 6, 10–44 (2014)CrossRefGoogle Scholar
  27. 27.
    M.M.A.-G. Jafar, M.H. Saleh, M.J.A. Ahmed, B.N. Bulos, T.M. Al-Daraghmeh, J. Mater. Sci Mater. Electron. 27, 3281–3291 (2016)CrossRefGoogle Scholar
  28. 28.
    M.H. Saleh, N.M. Ershaidat, M.J.A. Ahmad, B.N. Bulos, M.M.A.-G. Jafar, Opt. Rev. 24, 260–277 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    M.M.A.-G. Jafar, Eur. Int. J. Sci. Technol. 2, 214–274 (2013)Google Scholar
  31. 31.
    T.M. Al-Daraghmeh, M.H. Saleh, M.J.A. Ahmad, B.N. Bulos, K.M. Shehadeh, M.M.A.-G. Jafar, J. Electron. Mater. 47, 1806–1818 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    M. Schieber, J.C. Lund, R.W. Olsen, D.C. McGregor, J.M. Van Scyoc, R.B. James, E. Soria, E. Bauser, Nucl. Instr. Meth. A 377, 492–495 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Dmitriev, R.B. Bennett, L.J. Cirignano, M. Klugerman, K.S. Shah, Nucl. Instr. Meth. A 592, 334–345 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J.F. Condeles, R.C.Z. Lofrano, J.M. Rosolen, M. Mulato, Braz J Phys 36, 320–323 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    K.M Shehadeh, Comparative Study of Structural Properties of Lead Iodide (PbI2) Films Prepared by Thermal- and Flash-Evaporation Method at Different Substrate Temperatures. M.Sc. Thesis, The University of Jordan, Jordan, 2017Google Scholar
  36. 36.
    R.I. Dawood, A.J. Forty, M.R. Tubbs, Proc. R. Soc. Lond. A 284, 272–288 (1965)ADSCrossRefGoogle Scholar
  37. 37.
    M.R. Tubbs, Proc. R. Soc. Lond. A 280, 566–585 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338–1351 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    W.C. Tan, K. Koughia, J. Singh, S.O. Kasap, Optical properties of condensed matter and applications (Wiley, London, 2006)Google Scholar
  40. 40.
    I. Studenyak, M. Kranjčec, M. Kurik, Int. J. Opt. Appl. 4, 76–83 (2014)Google Scholar
  41. 41.
    S.K. O'Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334–3340 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    J. Tauc, Optical Properties of Solids, ed. By F. Abelés (North-Holland, Amsterdam, 1972), pp. 277–310Google Scholar
  43. 43.
    D. Dragoman, M. Dragoman, Optical characterization of solids (Springer, Berlin, 2002)CrossRefGoogle Scholar
  44. 44.
    N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Clarendon, Oxford, 1979)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mousa M. Abdul-Gader Jafar
    • 1
    Email author
  • Mahmoud H. Saleh
    • 2
  • Tariq M. Al-Daraghmeh
    • 3
  • Mais Jamil A. Ahmad
    • 4
  • Maryam A. AbuEid
    • 5
  • Nidal M. Ershaidat
    • 1
  • Basim N. Bulos
    • 1
  1. 1.Department of Physics, School of ScienceThe University of JordanAmmanJordan
  2. 2.Department of Physics, Faculty of ScienceAl-Balqa Applied UniversityAl-SaltJordan
  3. 3.Department of Basic Science, Faculty of Arts and ScienceMiddle East UniversityAmmanJordan
  4. 4.Leibniz Institute für Analytische Wissenschaften-ISAS e.V.DortmundGermany
  5. 5.Department of Basic SciencesPrincess Sumaya University for TechnologyAmmanJordan

Personalised recommendations