Advertisement

Applied Physics A

, 125:620 | Cite as

Optical and photocatalytic behaviors of iron selenide thin films grown by chemical bath deposition versus deposition time and annealing temperature

  • Parisa Sohrabi
  • Nader GhobadiEmail author
Article
  • 16 Downloads

Abstract

Nanostructured FeSe thin films were deposited on glass substrates by chemical bath deposition method and the deposition time varies. The thin films are characterized by X-ray diffraction. Surface morphology of the fabricated thin films was obtained by field-emission scanning electron microscopy. In addition, atomic force microscope was employed to investigate the surface topography of the films and optical properties of films were determined by UV–Vis spectroscopy. With the increasing the deposition time the optical band gap energy of the as-deposited thin films decrease. With the FeSe thin films as photocatalyst, we decolorized two different chemical structure dyes, Congo Red (CR) and Methylene Blue (MB). A kinetic study has been performed. In addition, the heat treatment at 100 °C and 200 °C has the same behavior as well as the deposition time resulting in the shift in the optical absorption edge towards lower energy and the improvement in photocatalytic activity.

Notes

References

  1. 1.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    B.R. Cuenya, Thin Solid Films 518, 3127 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Dong, H. Xu, F. Zhang, C. Chen, L. Liu, G. Wu, Appl. Catal. A 470, 294 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Janczarek, A. Zielinska-Jurek, I. Markowska, J. Hupka, Photochem. Photobiol. Sci. 14, 591 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, G.-F. Huang, W.-Q. Huang, L.-L. Wang, Y. Tian, Z.-L. Ma, Z.-M. Yang, Mater. Lett. 75, 221 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Poongodi, P. Anandan, R.M. Kumar, R. Jayavel, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 237 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Nair, M.A. Khadar, S.S. Kumar, M. Rajalakshmi, A.K. Arora, K.G.M. Nair, Nucl. Instrum. Methods Phys. Res. Sect. B 254, 131 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    R.B. Kale, C.D. Lokhande, J. Phys. Chem. B 109, 20288 (2005)CrossRefGoogle Scholar
  9. 9.
    S.I. Mogal, M. Mishra, V.G. Gandhi, R.J. Tayade, Mater. Sci. Forum 734, 364 (2013)CrossRefGoogle Scholar
  10. 10.
    P.P. Hankare, P.A. Chate, S.D. Delekar, M.R. Asabe, I.S. Mulla, J. Phys. Chem. Solids 67, 2310 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    P. Sohrabi, S. Daneshmandi, H. Salamati, M. Ranjbar, Thin Solid Films 571, Part 1, 180 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Pawar, B.S. Pawar, J.H. Kim, O.-S. Joo, C.D. Lokhande, Curr. Appl. Phys. 11, 117 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379, 7 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    R.S. Sonawane, B.B. Kale, M.K. Dongare, Mater. Chem. Phys. 85, 52 (2004)CrossRefGoogle Scholar
  15. 15.
    W. Qiu, M. Xu, X. Yang, F. Chen, Y. Nan, J. Zhang, H. Iwai, H. Chen, J. Mater. Chem. 21, 13327 (2011)CrossRefGoogle Scholar
  16. 16.
    R.A. Hussain, A. Badshah, M.D. Khan, N. Haider, B. Lal, S.I. Khan, A. Shah, Mater. Chem. Phys. 159, 152 (2015)CrossRefGoogle Scholar
  17. 17.
    C.D. Lokhande, P.M. Gondkar, R.S. Mane, V.R. Shinde, S.-H. Han, J. Alloys Compd. 475, 304 (2009)CrossRefGoogle Scholar
  18. 18.
    A.A. Aref, L. Xiong, N. Yan, A.M. Abdulkarem, Y. Yu, Mater. Chem. Phys. 127, 433 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Appl. Surf. Sci. 418, 380 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)CrossRefGoogle Scholar
  21. 21.
    J.N. Ximello-Quiebras, G. Contreras-Puente, J. Aguilar-Hernández, G. Santana-Rodriguez, A. Arias-Carbajal Readigos, Sol. Energy Mater. Sol. Cells 82, 263 (2004)CrossRefGoogle Scholar
  22. 22.
    H.M. Pathan, B.R. Sankapal, J.D. Desai, C.D. Lokhande, Mater. Chem. Phys. 78, 11 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Erat, H. Metin, M. Arı, Mater. Chem. Phys. 111, 114 (2008)CrossRefGoogle Scholar
  24. 24.
    J.-F. Zhao, J.-M. Song, C.-C. Liu, B.-H. Liu, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, Z.-P. Zhang, CrystEngComm 13, 5681 (2011)CrossRefGoogle Scholar
  25. 25.
    A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas, P. Paul, B. Adhikary, ACS Appl. Mater. Interfaces 4, 1919 (2012)CrossRefGoogle Scholar
  26. 26.
    A.R. Patil, V.N. Patil, P.N. Bhosale, L.P. Deshmukh, Mater. Chem. Phys. 65, 266 (2000)CrossRefGoogle Scholar
  27. 27.
    S.R. Kang, S.W. Shin, D.S. Choi, A.V. Moholkar, J.-H. Moon, J.H. Kim, Curr. Appl. Phys. 10, S473 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    I.P. O'Hare, K. Govender, P. O'Brien, D. Smyth-Boyle, MRS Proc. 668, H8.15 (2001)CrossRefGoogle Scholar
  29. 29.
    A.U. Ubale, Y.S. Sakhare, M.R. Belkedkar, A. Singh, Mater Res Bull 48, 863 (2013)CrossRefGoogle Scholar
  30. 30.
    N. Hamdadou, J.C. Bernède, A. Khelil, J. Cryst. Growth 241, 313 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    N. Ghobadi, J. Mater. Sci. Mater. Electron. 27, 8951 (2016)CrossRefGoogle Scholar
  32. 32.
    S.M. Pawar, A.V. Moholkar, U.B. Suryavanshi, K.Y. Rajpure, C.H. Bhosale, Sol. Energy Mater. Sol. Cells 91, 560 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y. Deak Kim, T. Kim, Vacuum 83, 1066 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    E. Gholami Hatam, N. Ghobadi, Mater. Sci. Semicond. Process. 43, 177 (2016)CrossRefGoogle Scholar
  35. 35.
    N. Ghobadi, T. Akbari Badakhshan, Optik 126, 4557 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    R.A. Hussain, A. Badshah, S. Marwat, F. Yasmin, M.N. Tahir, J. Organomet. Chem. 769, 58 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751 (2014)CrossRefGoogle Scholar
  38. 38.
    S.H. Mohamed, J. Phys. D Appl. Phys. 43, 035406 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Superlattices Microstruct. 50, 98 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    S.-H. Wang, T.-K. Chen, K.K. Rao, M.-S. Wong, Appl. Catal. B 76, 328 (2007)CrossRefGoogle Scholar
  41. 41.
    N. Miranda-García, S. Suárez, M.I. Maldonado, S. Malato, B. Sánchez, Catal. Today 230, 27 (2014)CrossRefGoogle Scholar
  42. 42.
    D.D. Dionysiou, M.T. Suidan, I. Baudin, J.-M. Laı̂né, Appl. Catal. B Environ. 50, 259 (2004)CrossRefGoogle Scholar
  43. 43.
    R. Akbarzadeh, S.B. Umbarkar, R.S. Sonawane, S. Takle, M.K. Dongare, Appl. Catal. A 374, 103 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran

Personalised recommendations