Advertisement

Applied Physics A

, 125:618 | Cite as

Facile synthesis and controlling factors of highly uniform nanostructured MoS2 thin films as buffer layers in gas sensors

  • Sandeep Reddy Gottam
  • Chi-Ting Tsai
  • Li-Wen Wang
  • Jun-Ting Lin
  • Chun-Cheng Lin
  • Sheng-Yuan ChuEmail author
Article
  • 50 Downloads

Abstract

Large-area highly uniform MoS2 thin film deposition by surface modification and solvent miscellany, crystallization and tuneable grain size by annealing and sulfurization facilitates the implementation of MoS2 thin films as buffer layers. MoS2 is a layered material and is not soluble in any solvent and the dispersion will not be uniform which can be solved with our solvent system. To use MoS2 as a buffer layer, many factors are significant in controlling the parameters without affecting the material chemical characteristics. Thermal treatment with modulated sulfurization reforms the grain morphology yielding the flexibility of usage in more applications. MoS2 uniform thin film showed ultra-fast response and recovery rates of approximately 3 and 2.5 s for low concentrations of hydrogen gas and change is sensitivity for a small change in temperature. The uniform scattering with nano-sized grains throughout the film increases the surface area and hence escorts the thin film usage as buffer layers in MISIM structure of memristors. Cost-effective growth, deposition and fabrication techniques is a breakthrough for metal sulfide thin films.

Notes

Acknowledgements

This research was, in part, supported by the Ministry of Science and Technology, Taiwan, R.O.C., Aim for the Top University Project for National Cheng Kung University. The authors gratefully acknowledge the financial support provided by the Ministry of Science and Technology, Taiwan (Grants MOST 106-2221-E-006-226).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

339_2019_2916_MOESM1_ESM.docx (1.7 mb)
Supplementary file1 (DOCX 1730 kb)

References

  1. 1.
    G. Fiori, F. Bonaccorso, G. Iannaccone et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    S. Das, M. Kim, J.-W. Lee et al., Synthesis, properties, and applications of 2-D materials: a comprehensive review. Crit. Rev. Solid State Mater. Sci. 39(4), 231–252 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kim, A. Konar, W.-S. Hwang et al., High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012)Google Scholar
  4. 4.
    Y. Gong, J. Lin, X. Wang et al., Vertical and in-plane heterostructures from WS 2/MoS 2 monolayers. Nat. Mater. 13(12), 1135 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Gubicza, D.Z. Manrique, L. Pósa et al., Asymmetry-induced resistive switching in Ag–Ag 2 S–Ag memristors enabling a simplified atomic-scale memory design. Sci. Rep. 6, 30775 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W. Cao, J. Kang, S. Bertolazzi et al., Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? IEEE Trans. Electron Dev. 61(10), 3456–3464 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Najmaei, J. Yuan, J. Zhang et al., Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 48(1), 31–40 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Choi, Y.T. Lee, S. Im, Two-dimensional van der Waals nanosheet devices for future electronics and photonics. Nano Today 11(5), 626–643 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Delabie, M. Caymax, B. Groven et al., Low temperature deposition of 2D WS 2 layers from WF 6 and H 2 S precursors: Impact of reducing agents. Chem. Commun. 51(86), 15692–15695 (2015)CrossRefGoogle Scholar
  10. 10.
    K.M. McCreary, A.T. Hanbicki, J.T. Robinson et al., Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 24(41), 6449–6454 (2014)CrossRefGoogle Scholar
  11. 11.
    E. Xenogiannopoulou, P. Tsipas, K. Aretouli et al., High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN (0001)/Si (111) substrates by molecular beam epitaxy. Nanoscale 7(17), 7896–7905 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A.S. George, Z. Mutlu, R. Ionescu et al., Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Adv. Funct. Mater. 24(47), 7461–7466 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Tarasov, P.M. Campbell, M.Y. Tsai et al., Highly uniform trilayer molybdenum disulfide for wafer-scale device fabrication. Adv. Funct. Mater. 24(40), 6389–6400 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Yu, M. Liao, W. Zhao et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12), 12001–12007 (2017)CrossRefGoogle Scholar
  15. 15.
    M.-L. Tsai, S.-H. Su, J.-K. Chang et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014)CrossRefGoogle Scholar
  16. 16.
    V.K. Sangwan, D. Jariwala, I.S. Kim et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10(5), 403 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J.-T. Qiu, S. Samanta, M. Dutta et al., Controlling resistive switching by using optimized MoS2 interfacial layer and the role of top electrodes on ascorbic acid sensing in TaOx-based RRAM. Langmuir 35, 3897–3906 (2019)CrossRefGoogle Scholar
  18. 18.
    P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16(1), 572–576 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    N. Gao, Y. Guo, S. Zhou et al., Structures and magnetic properties of MoS2 grain boundaries with antisite defects. J. Phys. Chem. C 121(22), 12261–12269 (2017)CrossRefGoogle Scholar
  20. 20.
    D. Son, J. Lee, S. Qiao et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol 9(5), 397 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M. Darwish, K. Board, Experimental observation of switching in MISM and MISIM devices. IEE Proc. I Solid State Electron Dev. 128(5), 161–164 (1981)CrossRefGoogle Scholar
  22. 22.
    N.A. Afshari, R.P. Igo Jr., N.J. Morris et al., Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat. Commun. 8, 14898 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    X. Liu, S. Cheng, H. Liu et al., A survey on gas sensing technology. Sensors 12(7), 9635–9665 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Yang, Y. Gu, E. Lee et al., Wafer-scale synthesis of thickness-controllable MoS2 films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system. Nanoscale 7(20), 9311–9319 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    R. Shahzad, T. Kim, S.-W. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films 641, 79–86 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    J.V. Pondick, J.M. Woods, J. Xing et al., Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition. ACS Appl. Nano Mater. 1(10), 5655–5661 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Kajita, T. Nakayama, J. Yamauchi, Density functional calculation of work function using charged slab systems. J. Phys.: Conf. Ser. 29, 120 (2006)ADSGoogle Scholar
  28. 28.
    D. Cahen, A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments. Adv. Mater. 15(4), 271–277 (2003)CrossRefGoogle Scholar
  29. 29.
    K. Wandelt, The local work function: Concept and implications. Appl. Surf. Sci. 111, 1–10 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    J.H. Kim, J. Lee, J.H. Kim et al., Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. 106(25), 251606 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    S. Choi, Z. Shaolin, W. Yang, Layer-number-dependent work function of MoS2 nanoflakes. J. Korean Phys. Soc. 64(10), 1550–1555 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    X. Wang, H. Feng, Y. Wu et al., Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135(14), 5304–5307 (2013)CrossRefGoogle Scholar
  33. 33.
    D. Ge, Y. Li, L. Yang et al., Improved self-assembly through UV/ozone surface-modification of colloidal spheres. Thin Solid Films 519(15), 5203–5207 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Politano, M. Vitiello, L. Viti et al., The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials “beyond graphene” and topological insulators. Flat Chem. 1, 60–64 (2017)Google Scholar
  35. 35.
    Q. Chen, H. Li, W. Xu et al., Atomically flat zigzag edges in monolayer MoS2 by thermal annealing. Nano Lett. 17(9), 5502–5507 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Niu, R. Wang, W. Jiao et al., MoS2 graphene fiber based gas sensing devices. Carbon 95, 34–41 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Hao, Y. Liu, W. Gao et al., High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. J. Alloy Compd. 682, 29–34 (2016)CrossRefGoogle Scholar
  39. 39.
    E.W.K. Koh, C.H. Chiu, Y.K. Lim et al., Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study. Int. J. Hydrogen Energy 37(19), 14323–14328 (2012)CrossRefGoogle Scholar
  40. 40.
    Z. Qin, K. Xu, H. Yue et al., Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuators B Chem. 262, 771–779 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Mathematic and Physical SciencesR.O.C. Air Force AcademyKaohsiungTaiwan
  3. 3.Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations