Applied Physics A

, 125:622 | Cite as

Synthesis and investigation of some physical properties of pure and Ho-loaded ZnO nano-rods

  • S. AydinEmail author
  • G. Turgut


In this research, pure and Ho-loaded zinc oxide nano-rods have been synthesized with the sol–gel spin coating way. The impact of holmium-loading content changed between 0–4 at.% in step of 1 at.% on the structural, vibrational, surface, and optical characters was inquired. The hexagonal ZnO nano-rods with (002) and (101) preferential orientations were seen from SEM and XRD analyses. It was found that the surface character of ZnO nano-rods depended on Ho-loading content. The UV and green emission bands were observed from PL analysis. A blue shift with low-content Ho level was seen from UV/Vis spectrophotometer and PL measurements. The optical band-gap value primarily raised from 3.32 to 3.40 eV for low Ho content, and then, it went down for more Ho loading. The present study gives that the physical features of zinc oxide are greatly healed with holmium loading.



  1. 1.
    A.D. Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, Mater. Sci. Semicond. Process 69, 44–51 (2017)CrossRefGoogle Scholar
  2. 2.
    H.-I. Chen, J.-J. Hsiao, C.-H. Fang, J.-A. Jiang, J.-C. Wang, Y.-F. Wu, T.-E. Nee, J. Lumin. 190, 136–140 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Lu, J. Huang, B. Li, K. Tang, Y. Ma, M. Cao, L. Wang, L. Wang, Appl. Surf. Sci. 428, 61–65 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    A. Khayatiana, V. Asgaria, A. Ramazania, S.F. Akhtarianfar, M.A. Kashia, S. Safa, Mater. Res. Bull. 94, 77–84 (2017)CrossRefGoogle Scholar
  5. 5.
    V. Postica, M. Hoppe, J. Grottrup, P. Hayes, V. Robisch, D. Smazna, R. Adelung, B. Viana, P. Aschehoug, T. Pauporte, O. Lupan, Solid State Sci. 71, 75–86 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, J. Alloy Compd. 721, 45–54 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Chen, L. Wang, W. Wang, M. Cao, Mater. Chem. Phys. 199, 416–423 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Prasanna, V.R. Vijayaraghavan, Mater. Sci. Eng. C 77, 1027–1034 (2017)Google Scholar
  9. 9.
    J. Ding, H. Chen, H. Fu, Mater. Res. Bull. 95, 185–189 (2017)CrossRefGoogle Scholar
  10. 10.
    E.V. Kolobkova, S.K. Evstropiev, N.V. Nikonorov, V.N. Vasilyev, K.S. Evstropyev, Opt. Mater. 73, 712–717 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    N. Pushpa, M.K. Kokila, J. Lumin. 190, 100–107 (2017)CrossRefGoogle Scholar
  12. 12.
    E. Karakose, H. Çolak, Energy 141, 50–55 (2017)CrossRefGoogle Scholar
  13. 13.
    V. Pandiyarasan, S. Suhasini, J. Archana, M. Navaneethan, A. Majumdar, Y. Hayakawa, H. Ikeda, Appl. Surf. Sci. 418, 352–361 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    R. Nistico, D. Scalarone, G. Magnacca, Microporous Mesoporous Mater. 248, 18–29 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Tang, C. Mei, P. Chuang, T. Song, H. Su, Y. Wu, Y. Qiao, J.-C.-A. Huang, Y.-F. Liao, Thin Solid Films 623, 14–18 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Z.Y. Lee, S.Shiong Ng, F.K. Yam, Surf. Coat. Technol. 310, 38–42 (2017)Google Scholar
  17. 17.
    M. Dahnoun, A. Attaf, H. Saidi, A. Yahia, C. Khelif, Optik 134, 53–59 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    H. Xie, P.-C. Su, Thin Solid Films 584, 116–119 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    E.F. Keskenler, G. Turgut, S. Aydın, R. Dılber, U. Turgut, J. Ovo. Res. 9, 61–71 (2013)Google Scholar
  20. 20.
    P.P. Pradyumnan, A. Paulson, M. Sabeer, N. Deepthy, AIP Conf. Proc. 1832, 110055 (2017)Google Scholar
  21. 21.
    H. Wahab, E. Ahmed, M.N. Khan, Ceram. Int. 41, 2439–2445 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Ekicibil, O.M. Ozkendir, A.H. Farha, Y. Ufuktepe, J. Electron Spectrosc. Relat. Phenom. 202, 56–61 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Ekicibil, Solid State Sci. 14, 1486–1491 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Akyol, A. Ekicibil, K. Kiymaç, J. Supercond. Nov. Magn. 26, 3257–3262 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Franco Jr., H.V. Pessoni, Mater. Lett. 180, 305–308 (2016)CrossRefGoogle Scholar
  26. 26.
    A.N. Ökte, Appl. Catal. A 475, 27–39 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Khataee, S. Saadi, B. Vahid, S.W. Joo, J. Ind. Eng. Chem. 35, 167–176 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Superlattices Microstruct. 67, 118–126 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    X. Yu, S. Liang, Z. Sun, Y. Duan, Y. Qin, L. Duan, H. Xia, P. Zhao, D. Li, Opt. Commun. 313, 90–93 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    G.M. Rai, M.A. Iqbal, Y. Xu, I.G. Will, W. Zhang, Chin. J. Chem. Phys. 24, 353–435 (2011)CrossRefGoogle Scholar
  31. 31.
    O. Martinez, J.L. Plaza, J. Mass, B. Capote, E. Dieguez, J. Jimenez, Superlattices Microstruct. 42, 145–151 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Z.C. Feng, J.W. Yu, J.B. Wang, R. Varatharajan, B. Nemeth, J. Nause, I. Ferguson, W. Lu, W.E. Collins, Mater. Sci. Forum 527–529, 1567–1570 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Singh, J.N.D. Deepthi, B. Ramachandran, M.S.R. Rao, Mater. Lett. 65, 2930–2933 (2011)CrossRefGoogle Scholar
  34. 34.
    R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor. Ceram. Int. 39, 5535–5543 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Popa, G. Schmerber, D. Toloman, M.S. Gabor, A. Mesaros, T. Petrisor, Adv. Eng. Forum 8–9, 301–308 (2013)CrossRefGoogle Scholar
  36. 36.
    G.L. Kabongo, P.S. Mbule, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, M.S. Dhlamini, Nanoscale Res. Lett. 11, 418 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    S. Li, S. Ye, T. Liu, H. Wang, D. Wang, J. Alloy Compd. 658, 85–90 (2016)CrossRefGoogle Scholar
  38. 38.
    A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. El Kenz, J. Rare Earths 32, 715 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Demirselcuk, V. Bilgin, Appl. Surf. Sci. 273, 478–483 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    R.J.D. Tilley, Crystals and Crystal Structures (Wiley, London, 2006)Google Scholar
  41. 41.
    D. Raoufi, T. Raoufi, Appl. Surf. Sci. 255, 5812–5817 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A. Ismail, M.J. Abdullah, J. King Saud Univ. Sci. 25, 209–215 (2013)CrossRefGoogle Scholar
  43. 43.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Elseiver, Oxford, 1997)Google Scholar
  44. 44.
    H. Morkoc, U. Ozgur, Zinc oxide; Fundementals Materials and Device Technology (Wiley, Weinheim, 2009)CrossRefGoogle Scholar
  45. 45.
    M. Silambarasan, S. Saravanan, T. Soga, Int. J. Chem. Technol. Res. 7, 1644–1650 (2015)Google Scholar
  46. 46.
    X.D. Guo, R.X. Li, Y. Hang, Z.Z. Xu, B.K. Yu, H.L. Ma, X.W. Sun, Mater. Lett. 61, 4583–4586 (2007)CrossRefGoogle Scholar
  47. 47.
    R.H. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    K. N’konou, M. Haris, Y. Lare, M. Baneto, K. Napo, J. Phys. 87, 4 (2016)Google Scholar
  49. 49.
    J. Serrano, F.J. Manjón, A.H. Romero, A. Ivanov, M. Cardona, R. Lauck, A. Bosak, M. Krisch, Phonon dispersion relations of zinc oxide: Inelastic neutron scattering and ab initio calculations. Phys. Rev. B 81, 174304 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    T. Serin, N. Serin, S. Karadeniz, H. Sarı, N. Tugluoglu, O. Pakma, J Non Cryst. Solids 352(3), 209 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    J.I. Pankove, Optical Process in Semiconductors (Dove, New York, 1975)Google Scholar
  52. 52.
    J. Joseph, V. Mathew, J. Mathew, K.E. Abraham, Turk. J. Phys. 33, 37–47 (2009)Google Scholar
  53. 53.
    G. Turgut, E. Sonmez, Metall. Mater. Trans. A 45, 3675–3685 (2014)CrossRefGoogle Scholar
  54. 54.
    A. Tarat, C.J. Nettle, D.T.J. Bryant, D.R. Jones, M.W. Penny, R.A. Brown, R. Majitha, K.E. Meissner, T.G.G. Maffeis, Nanoscale Res. Lett. 9, 11 (2014)CrossRefGoogle Scholar
  55. 55.
    Y. Li, J.-C. Liu, X.-X. Lian, T. Lü, F.-X. Zhao, Trans. Nonferrous Met. Soc. China 25, 3657–3663 (2015)CrossRefGoogle Scholar
  56. 56.
    G. Srinet, R. Kumar, V. Sajal, Ceram. Int. 40, 4025–4031 (2014)CrossRefGoogle Scholar
  57. 57.
    Y.A. Ling, Y. Yung, Z.Z. Zhen, B.Y. Chang, Y.R. Qiang, L.S. Pin, S. Liang, Sci. China Tech. Sci. 56, 25–31 (2013)CrossRefGoogle Scholar
  58. 58.
    K. Fabitha, M.S. Ramachandra Rao, Ho3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures. J. Opt. Soc. Am. B 34(12), 2485–2493 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied SciencesAtaturk UniversityErzurumTurkey
  2. 2.Department of Management Information Systems, Faculty of Economics and Administrative SciencesAtaturk UniversityErzurumTurkey
  3. 3.Department of Basic Sciences, Science FacultyErzurum Technical UniversityErzurumTurkey
  4. 4.High Technology Research Centre (YUTAM)Erzurum Technical UniversityErzurumTurkey

Personalised recommendations