Applied Physics A

, 125:615 | Cite as

Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films

  • Mohamed SalahEmail author
  • Samir AziziEmail author
  • Abdelwaheb Boukhachem
  • Chokri Khaldi
  • Mosbah Amlouk
  • Jilani Lamloumi


In this paper, thin films of lithium-doped zinc oxide (ZnO: Li) were prepared by spray pyrolysis in a monophase hexagonal wurtzite structure as shown by X-ray analysis. Rietveld refinement of the X-ray diffraction diagram was applied to calculate the crystalline structure parameters. Impedance spectroscopy, electrical conductivity and dielectric measurements, at various temperatures 340–440 °C and in a frequency spectrum from 5 Hz to 1 MHz, were performed using the EC-Lab V10.12 system. During the electrical conduction processes in the sample, the physical parameters of ZnO:Li thin films such as dielectric constant, relaxation frequency and electrical conductivity σac and σdc, were examined. In addition, AC conductivity analysis resulted in a power law (σac = ωs). Obviously, the temperature dependence of the exponent s fitted well with the correlated barrier hopping (CBH) model proposed by Elliott. Finally, the dependence of conductivity and dielectric constants with frequency and temperature was discussed.



  1. 1.
    G. Corro, S. Cebada, F. Bañuelos, J.L.G. Fierro, U. Pal, E. Guilleminot, Low cost Cu/ZnO as low temperature (150 °C) catalyst for diesel particulate matter oxidation. Top. Catal. 59, 1090–1094 (2016)CrossRefGoogle Scholar
  2. 2.
    S.M. Mohammad, Z. Hassan, N.M. Ahmed, N.H. Al-Hardan, M. Bououdina, Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. J. Mater. Sci. Mater. Electron 26, 1322–1331 (2015)CrossRefGoogle Scholar
  3. 3.
    K.H. Choi, M. Mustafa, K. Rahman, B.K. Jeong, Y.H. Doh, Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies. Appl. Phys. A 106, 165–170 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.V. Gohel, A.K. Jana, M. Singh, Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS–Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications. Appl. Phys. A 123, 506 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S.G. Kumar, K.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)CrossRefGoogle Scholar
  6. 6.
    K.-J. Kim, P.B. Kreider, C. Choi, C.-H. Chang, H.-G. Ahn, Visible-light-sensitive Na-doped p-type flower-like ZnO photocatalysts synthesized via a continuous flow microreactor. RSC Adv. 3, 12702–12710 (2013)CrossRefGoogle Scholar
  7. 7.
    C. Karunakaran, A. Vijayabalan, P. Vinayagamoorthy, CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation. Appl. Phys. A 125, 14 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    R. Uma, K. Ravichandran, S. Sriram, B. Sakthivel, Cost-effective fabrication of ZnO/g-C3N4 composite thin films for enhanced photocatalytic activity against three different dyes (MB, MG and RhB). Mater. Chem. Phys. 201, 147–155 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Atif, M. Fakhar-e-Alam, M.S. AlSalhi, Role of sensitivity of zinc oxide nanorods (ZnO-NRs) based photosensitizers in hepatocellular site of biological tissue. Laser Phys. 21, 1950–1961 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Abdolmaleki, S. Mallakpour, S. Borandeh, Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polym. Bull. 69, 15–28 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Snega, K. Ravichandran, N.J. Begum, K. Thirumurugan, Enhancement in the electrical and antibacterial properties of sprayed ZnO films by simultaneous doping of Mg and F. J. Mater. Sci. Mater. Electron. 24, 135–141 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Rajaboopathi, S. Thambidurai, Synthesis of bio-surfactant based Ag/ZnO nanoparticles for better thermal, photocatalytic and antibacterial activity. Mater. Chem. Phys. 223, 512–522 (2019)CrossRefGoogle Scholar
  13. 13.
    H. Mahdhi, J.L. Gauffier, K. Djessas, Z.B. Ayadi, Correction to: thickness dependence of properties Ga-doped ZnO thin films deposited by magnetron sputtering. J. Mater. Sci. Mater. Electron. 29, 6127–6127 (2018)CrossRefGoogle Scholar
  14. 14.
    T. Kryshtab, V.S. Khomchenko, V.B. Khachatryan, N.N. Roshchina, J.A. Andraca-Adame, O.S. Lytvyn, V.I. Kushnirenko, Effect of doping on properties of Zno: Cu and Zno: Ag thin films. J. Mater. Sci. Mater. Electron. 18, 1115–1118 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Vijayalakshmi, A. Renitta, A. Monamary, Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method. J. Mater Sci. Mater. Electron. 29, 21023–21032 (2018)CrossRefGoogle Scholar
  16. 16.
    A. El Hichou, M. Addou, A. Bougrine, R. Dounia, J. Ebothé, M. Troyon, M. Amrani, Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis. Mater. Chem. Phys. 83, 43–47 (2004)CrossRefGoogle Scholar
  17. 17.
    C.G. Jin, T. Yu, Z.F. Wu, F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, L.J. Zhuge, X.M. Wu, Room-temperature deposition of transparent conductive Al-doped ZnO thin films using low energy ion bombardment. Appl. Phys. A 106, 961–966 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S. Roy, S. Basu, ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors. J. Mater. Sci. Mater. Electron. 15, 321–326 (2004)CrossRefGoogle Scholar
  19. 19.
    P. Mitra, A.P. Chatterjee, H.S. Maiti, Chemical deposition of ZnO films for gas sensors. J. Mater. Sci. Mater. Electron. 9, 441–445 (1998)CrossRefGoogle Scholar
  20. 20.
    P. Bhattacharyya, P.K. Basu, N. Mukherjee, A. Mondal, H. Saha, S. Basu, Deposition of nanocrystalline ZnO thin films on p-Si by novel galvanic method and application of the heterojunction as methane sensor. J. Mater. Sci. Mater. Electron. 18, 823–829 (2007)CrossRefGoogle Scholar
  21. 21.
    O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Gas sensitive ZnO thin films with desired (002) or (100) orientation obtained by ultrasonic spray pyrolysis. Mater. Chem. Phys. 148, 712–719 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Alexiadou, M. Kandyla, G. Mousdis, M. Kompitsas, Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance. Appl. Phys. A 123, 262 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    H. Liang, Q. Feng, X. Xia, R. Li, H. Guo, K. Xu, P. Tao, Y. Chen, G. Du, Room temperature electroluminescence from arsenic doped p-type ZnO nanowires/n-ZnO thin film homojunction light-emitting diode. J. Mater. Sci. Mater. Electron. 25, 1955–1958 (2014)CrossRefGoogle Scholar
  24. 24.
    H.T. Cao, C. Sun, Z.L. Pei, A.Y. Wang, L.S. Wen, R.J. Hong, X. Jiang, Properties of transparent conducting ZnO : Al oxide thin films and their application for molecular organic light-emitting diodes. J. Mater. Sci. Mater. Electron. 15, 169–174 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Li, G. Fang, H. Huang, H. Long, H. Wang, X. Mo, B. Dong, X. Zhao, Tunability of UV electroluminescence for n-ZnO:Al/n-ZnO/i-MgO/n-GaN heterostructured light-emitting diodes. Appl. Phys. B 107, 497–502 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    N. Üzar, Investigation of detailed physical properties and solar cell performances of various type rare earth elements doped ZnO thin films. J. Mater. Sci. Mater. Electron. 29, 10471–10479 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Xu, S. Yin, X. Zeng, S. Yang, X. Wen, Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells. Front. Optoelectron. 10, 31–37 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Pervez, K. Javed, Z. Iqbal, M. Shahzad, U. Khan, H. Latif, S. Abbas, N. Ahmad, Fabrication and comparison of dye-sensitized solar cells by using TiO2 and ZnO as photo electrode. Optik 182, 175–180 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, J. Heo, Cu2O/ZnO heterojunction thin-film solar cells: the effect of electrodeposition condition and thickness of Cu2O. Thin Solid Films 661, 132–136 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140, 382–390 (2013)CrossRefGoogle Scholar
  31. 31.
    A.A. Rani, S. Ernest, Characterization of spray-deposited ZnO thin films for dye-sensitized solar cell application. Appl. Phys. A 122, 647 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    R. Fan, F. Lu, K. Li, Single-mode channel waveguide at 1540nm in Er-doped ZnO thin film. J. Lumin. 192, 410–413 (2017)CrossRefGoogle Scholar
  33. 33.
    S.L. Li, F.M. Deng, Y.K. Ye, G. Fu, B. Liu, F.X. Wang, H.L. Wang, Optical waveguide and 1.54 μm photoluminescence properties in RF sputtered Er/Yb-doped ZnO thin films. Thin Solid Films 596, 51–55 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    S. Khodja, T. Touam, A. Chelouche, F. Boudjouan, D. Djouadi, Z. Hadjoub, A. Fischer, A. Boudrioua, Effects of stabilizer ratio on structural, morphological, optical and waveguide properties of ZnO nano-structured thin films by a sol–gel process. Superlattices Microstruct. 75, 485–495 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    P. Gu, X. Zhu, D. Yang, Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A 125, 50 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    M. Mazhdi, M.J. Tafreshi, The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence properties of zinc oxide nanoparticles prepared by co-precipitation method. Appl. Phys. A 124, 863 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    J.-H. Shen, S.-W. Yeh, H.-L. Huang, D. Gan, N.-J. Ho, Low-temperature preparation of undoped ZnO films with high transparency and conductivity by ion beam deposition. J. Electron. Mater. 39, 612–618 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    P. Shukla, S. Tiwari, S.R. Joshi, V.R. Akshay, M. Vasundhara, S. Varma, J. Singh, A. Chanda, Investigation on structural, morphological and optical properties of Co-doped ZnO thin films. Phys. B 550, 303–310 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    E. Asikuzun, O. Ozturk, L. Arda, C. Terzioglu, Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films. J. Mol. Struct. 1165, 1–7 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    A. Chelouche, D. Djouadi, H. Merzouk, A. Aksas, Influence of Ag doping on structural and optical properties of ZnO thin films synthesized by the sol–gel technique. Appl. Phys. A 115, 613–616 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    A. Jilani, M.S. Abdel-wahab, H.Y. Zahran, I.S. Yahia, A.A. Al-Ghamdi, Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach. Appl. Phys. A 122, 862 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    D.K. Kim, K.M. Kim, C.B. Park, Characteristics of p-type ZnO: As thin films prepared by the ampoule-tube method and ZnO p–n homojunction. Appl. Phys. A 98, 913–917 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Kim, J. Choe, G. Nam, I. Kim, J.-Y. Leem, S.-H. Lee, S. Kim, D.Y. Kim, S.-O. Kim, Influence of Al-, Co-, Cu-, and In-doped ZnO buffer layers on the structural and the optical properties of ZnO thin films. J. Korean Phys. Soc. 66, 224–228 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    B.J. Babu, S. Velumani, J. Arenas-Alatorre, A. Kassiba, J. Chavez, H. Park, S.Q. Hussain, J. Yi, R. Asomoza, Structural properties of ultrasonically sprayed Al-doped ZnO (AZO) thin films: effect of ZnO buffer layer on AZO. J. Electron. Mater. 44, 699–705 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    D.H. Kim, N.G. Cho, K.S. Kim, S. Han, H.G. Kim, Structural and electrical properties of Sb-doped p-type ZnO thin films fabricated by RF magnetron sputtering. J. Electroceram. 22, 82–86 (2009)CrossRefGoogle Scholar
  46. 46.
    A. Bouaine, A. Bourebia, H. Guendouz, Z. Riane, Synthesis and characterization of In doped ZnO thin film as efficient transparent conducting oxide candidate. Optik 166, 317–322 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 125, 238 (2019)ADSCrossRefGoogle Scholar
  48. 48.
    S.P. Bharath, K.V. Bangera, G.K. Shivakumar, Enhanced gas sensing properties of indium doped ZnO thin films. Superlattices Microstruct. 124, 72–78 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    M.T. Hosseinnejad, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Growth, characterization, and investigation of H2 gas sensing performance of Al-doped ZnO thin films synthesized by plasma focus device. J. Mater. Sci. Mater. Electron. 27, 11308–11318 (2016)CrossRefGoogle Scholar
  50. 50.
    C.S. Prajapati, A. Kushwaha, P.P. Sahay, Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films. Appl. Phys. A 113, 651–662 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    T. Hojati, M. Ebrahimi, R. Afzalzadeh, Highly sensitive CO sensor based on ZnO/MWCNT nano sheet network grown via hydrothermal method. Mater. Chem. Phys. 207, 50–57 (2018)CrossRefGoogle Scholar
  52. 52.
    N.N. Ilkhechi, N. Ghobadi, F. Yahyavi, Enhanced optical and hydrophilic properties of V and La co-doped ZnO thin films. Opt. Quant. Electron. 49, 39 (2017)CrossRefGoogle Scholar
  53. 53.
    A.S. Kumar, K.K. Nagaraja, H.S. Nagaraja, Effect of Sn doping on structural, optical, electrical and wettability properties of oriented ZnO nanorod arrays. J. Mater. Sci. Mater. Electron. 24, 3812–3822 (2013)CrossRefGoogle Scholar
  54. 54.
    A. Nirmal, A.K.K. Kyaw, X. Sun, H.V. Demir, Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics. J. Sol Gel Sci. Technol. 78, 613–620 (2016)CrossRefGoogle Scholar
  55. 55.
    C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, W. Geng, Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloy Compd. 770, 854–863 (2019)CrossRefGoogle Scholar
  56. 56.
    A.M.A. Abdelsamad, T.A. Gad-Allah, F.A. Mahmoud, M.I. Badawy, Enhanced photocatalytic degradation of textile wastewater using Ag/ZnO thin films. J. Water Process Eng. 25, 88–95 (2018)CrossRefGoogle Scholar
  57. 57.
    N. Narayanan, N.K. Deepak, Enhancement of visible luminescence and photocatalytic activity of ZnO thin films via Cu doping. Optik 158, 1313–1326 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    M. Taheri, H. Abdizadeh, M.R. Golobostanfard, Hierarchical ZnO nanoflowers and urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance. Mater. Chem. Phys. 220, 118–127 (2018)CrossRefGoogle Scholar
  59. 59.
    L. Xu, J. Miao, Y. Chen, J. Su, M. Yang, L. Zhang, L. Zhao, S. Ding, Characterization of Ag-doped ZnO thin film for its potential applications in optoelectronic devices. Optik 170, 484–491 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    C.-F. Fu, L.-F. Han, C. Liu, Effects of sputtering power on structural, electrical and optical properties of Cr-doped ZnO thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 26, 493–497 (2015)CrossRefGoogle Scholar
  61. 61.
    M. Vishwas, K.N. Rao, A.R. Phani, K.V.A. Gowda, R.P.S. Chakradhar, Effect of annealing temperature on electrical and nano-structural properties of sol–gel derived ZnO thin films. J. Mater. Sci. Mater. Electron. 22, 1415–1419 (2011)CrossRefGoogle Scholar
  62. 62.
    A.G.S. Kumar, L. Obulapathi, T.S. Sarmash, D.J. Rani, M. Maddaiah, T.S. Rao, K. Asokan, Structural, electrical and optical properties of Cd doped ZnO thin films by reactive dc magnetron sputtering. JOM 67, 834–839 (2015)CrossRefGoogle Scholar
  63. 63.
    Z. Huafu, L. Hanfa, Z. Aiping, Y. Changkun, Influence of the distance between target and substrate on the properties of transparent conducting Al–Zr co-doped zinc oxide thin films. J. Semicond. 30, 113002 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    H. Zhang, H. Liu, C. Lei, A. Zhou, C. Yuan, Low-temperature deposition of transparent conducting Mn-W co-doped ZnO thin films. J. Semicond. 31, 083005 (2010)CrossRefGoogle Scholar
  65. 65.
    R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Electrical properties of zinc oxide sputtered thin films. Microelectron. J. 34, 1087–1092 (2003)CrossRefGoogle Scholar
  66. 66.
    A. Mhamdi, A. Labidi, B. Souissi, M. Kahlaoui, A. Yumak, K. Boubaker, A. Amlouk, M. Amlouk, Impedance spectroscopy and sensors under ethanol vapors application of sprayed vanadium-doped ZnO compounds. J. Alloy Compd. 639, 648–658 (2015)CrossRefGoogle Scholar
  67. 67.
    L.D. Sappia, M.R. Trujillo, I. Lorite, R.E. Madrid, M. Tirado, D. Comedi, P. Esquinazi, Nanostructured ZnO films: a study of molecular influence on transport properties by impedance spectroscopy. Mater. Sci. Eng. B 200, 124–131 (2015)CrossRefGoogle Scholar
  68. 68.
    A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A.K. Meikap, Dielectric constant, AC conductivity and impedance spectroscopy of zinc-containing diamond-like carbon film UV photodetector. J. Alloy. Compd. 758, 194–205 (2018)CrossRefGoogle Scholar
  69. 69.
    K.G. Girija, K. Somasundaram, A.K. Debnath, A. Topkar, R.K. Vatsa, Enhanced H2S sensing properties of gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy. Mater. Chem. Phys. 214, 297–305 (2018)CrossRefGoogle Scholar
  70. 70.
    M. Chaari, R.B. Belgacem, A. Matoussi, Impedance analysis, dielectric relaxation and modulus behaviour of ZnO–Sn2O3 ceramics. J. Alloys Compd. 726, 49–56 (2017)CrossRefGoogle Scholar
  71. 71.
    F. Gao, J. Wang, H. Zhang, H. Jia, Z. Cui, G. Yang, Role of ionic strength on protein fouling during ultrafiltration by synchronized UV–Vis spectroscopy and electrochemical impedance spectroscopy. J. Membr. Sci. 563, 592–601 (2018)CrossRefGoogle Scholar
  72. 72.
    M.R. Hasyim, S.S. Berbano, R.M. Cleary, M.T. Lanagan, D.K. Agrawal, Impedance spectroscopy modeling of lithium borate with silica: a dispersed ionic conductor system. Ceram. Int. 43, 6796–6806 (2017)CrossRefGoogle Scholar
  73. 73.
    D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film. Sens. Actuators B Chem. 266, 52–62 (2018)CrossRefGoogle Scholar
  74. 74.
    K. Ramachandran, T.L. Pruyn, T. Huang, Y. Wang, P.M. Singh, W.J. Ready, R.A. Gerhardt, V. Sundaram, R. Tummala, Investigation of copper plated-through-holes in glass fiber reinforced epoxy substrates using AC impedance spectroscopy. J. Mater. Sci. Mater. Electron. 26, 2563–2570 (2015)CrossRefGoogle Scholar
  75. 75.
    O. Kamoun, A. Boukhachem, A. Yumak, P. Petkova, K. Boubaker, M. Amlouk, Europium incorporation dynamics and some physical investigations within ZnO sprayed thin films. Mater. Sci. Semicond. Process. 43, 8–16 (2016)CrossRefGoogle Scholar
  76. 76.
    P.V. Raghavendra, J.S. Bhat, N.G. Deshpande, Enhancement of photoluminescence in Sr doped ZnO thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 68, 262–269 (2017)CrossRefGoogle Scholar
  77. 77.
    A.S. Enigochitra, P. Perumal, C. Sanjeeviraja, D. Deivamani, M. Boomashri, Influence of substrate temperature on structural and optical properties of ZnO thin films prepared by cost-effective chemical spray pyrolysis technique. Superlattices Microstruct. 90, 313–320 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    K. Boubaker, A. Chaouachi, M. Amlouk, H. Bouzouita, Enhancement of pyrolysis spray disposal performance using thermal time-response to precursor uniform deposition. Eur. Phys. J. Appl. Phys. 37, 105–109 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)CrossRefGoogle Scholar
  80. 80.
    A. Rherari, M. Addou, M. Haris, Structural and optical characterization of (Sn/Li) co-doped ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 15762–15767 (2017)CrossRefGoogle Scholar
  81. 81.
    F. Zahedi, R.S. Dariani, Effect of precursor concentration on structural and optical properties of ZnO microrods by spray pyrolysis. Thin Solid Films 520, 2132–2135 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    A. Mosbah, A. Moustaghfir, S. Abed, N. Bouhssira, M.S. Aida, E. Tomasella, M. Jacquet, Comparison of the structural and optical properties of zinc oxide thin films deposited by dc and rf sputtering and spray pyrolysis. Surf. Coat. Technol. 200, 293–296 (2005)CrossRefGoogle Scholar
  83. 83.
    M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Effects of lithium doping on: microstructure, morphology, nanomechanical properties and corrosion behaviour of ZnO thin films grown by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 30, 1–19 (2018)Google Scholar
  84. 84.
    M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films. J. Mater. Sci. 52, 10439–10454 (2017)ADSCrossRefGoogle Scholar
  85. 85.
    A. Larson, R. Von Dreele, Report LAUR 86–748 (Los Alamos National Laboratory, New Mexico, USA, 2000)Google Scholar
  86. 86.
    N. Chahmat, T. Souier, A. Mokri, M. Bououdina, M.S. Aida, M. Ghers, Structure, microstructure and optical properties of Sn-doped ZnO thin films. J. Alloy Compd. 593, 148–153 (2014)CrossRefGoogle Scholar
  87. 87.
    R.A. Young, The rietveld method (International union of crystallography, England, 1993)Google Scholar
  88. 88.
    R.A. Zargar, M. Arora, R.A. Bhat, Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl. Phys. A 124, 36 (2017)ADSCrossRefGoogle Scholar
  89. 89.
    H. Dutta, M. Sinha, Y.C. Lee, S.K. Pradhan, Microstructure characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg–Zn-ferrite by Rietveld’s analysis and electron microscopy. Mater. Chem. Phys. 105, 31–37 (2007)CrossRefGoogle Scholar
  90. 90.
    V. Kumar, S. Kumari, P. Kumar, M. Kar, L. Kumar, Structural analysis by Rietveld method and its correlation with optical properties of nanocrystalline zinc oxide. Adv. Mater. Lett. 6, 139–147 (2015)CrossRefGoogle Scholar
  91. 91.
    M. Toubane, R. Tala-Ighil, F. Bensouici, M. Bououdina, W. Cai, S. Liu, M. Souier, A. Iratni, Structural, optical and photocatalytic properties of ZnO nanorods: effect of aging time and number of layers. Ceram. Int. 42, 9673–9685 (2016)CrossRefGoogle Scholar
  92. 92.
    M.D.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Particle size effect on the dielectric properties of ZnO nanoparticles. Mater. Chem. Phys. 224, 79–84 (2019)CrossRefGoogle Scholar
  93. 93.
    L. Znaidi, T. Chauveau, A. Tallaire, F. Liu, M. Rahmani, V. Bockelee, D. Vrel, P. Doppelt, Textured ZnO thin films by sol–gel process: synthesis and characterizations. Thin Solid Films 617, 156–160 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    L. Lutterotti, MAUD program, CPD, Newsletter (IUCr) No. 24 (2000)Google Scholar
  95. 95.
    S. Bid, S.K. Pradhan, Characterization of crystalline structure of ball-milled nano-Ni–Zn-ferrite by Rietveld method. Mater. Chem. Phys. 84, 291–301 (2004)CrossRefGoogle Scholar
  96. 96.
    P. Bhattacharyya, S. Bhattacharjee, M. Bar, U.K. Ghorai, M. Pal, S. Baitalik, C.K. Ghosh, Hedgehog ZnO/Ag heterostructure: an environment-friendly rare earth free potential material for cold-white light emission with high quantum yield. Appl. Phys. A 124, 782 (2018)ADSCrossRefGoogle Scholar
  97. 97.
    E.F. Keskenler, S. Doğan, G. Turgut, B. Gürbulak, Evaluation of structural and optical properties of Mn-doped ZnO thin films synthesized by sol–gel technique. Metall. Mater. Trans. A 43, 5088–5095 (2012)CrossRefGoogle Scholar
  98. 98.
    S. Fujihara, C. Sasaki, T. Kimura, Effects of Li and Mg doping on microstructure and properties of sol–gel ZnO thin films. J. Eur. Ceram. Soc. 21, 2109–2112 (2001)CrossRefGoogle Scholar
  99. 99.
    H.-J. Jeon, S.-G. Lee, H. Kim, J.-S. Park, Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition. Appl. Surf. Sci. 301, 358–362 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    J. Sivasankari, S. Sankar, S. Selvakumar, L. Vimaladevi, R. Krithiga, Synthesis, structural and optical properties of Er doped, Li doped and Er + Li co-doped ZnO nanocrystallites by solution-combustion method. Mater. Chem. Phys. 143, 1528–1535 (2014)CrossRefGoogle Scholar
  101. 101.
    A. Goktas, I.H. Mutlu, Y. Yamada, Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol–gel method. Superlattices Microstruct. 57, 139–149 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    G. Srinivasan, R.T.R. Kumar, J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. J. Sol Gel Sci. Technol. 43, 171–177 (2007)CrossRefGoogle Scholar
  103. 103.
    S. Kalyanaraman, R. Vettumperumal, R. Thangavel, Study of multiple phonon behavior in Li-doped ZnO thin films fabricated using the sol–gel spin-coating technique. J. Korean Phys. Soc. 62, 804–808 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, R. Mahiou, G. Chadeyron, A. Fischer, A. Boudrioua, Doping effect investigation of Li-doped nanostructured ZnO thin films prepared by sol–gel process. J. Mater. Sci. Mater. Electron. 27, 8040–8046 (2016)CrossRefGoogle Scholar
  105. 105.
    S. Kalyanaraman, R. Thangavel, R. Vettumperumal, Structural and electrical properties of Li doped ZnO under Ar/H2 atmosphere. J. Sol Gel Sci. Technol. 65, 238–242 (2013)CrossRefGoogle Scholar
  106. 106.
    V. Bornand, A. Mezy, Morphological and ferroelectric studies of Li-doped ZnO thin films. Mater. Lett. 107, 357–360 (2013)CrossRefGoogle Scholar
  107. 107.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films. J. Photochem. Photobiol. B. Biol. 120, 1–9 (2013)CrossRefGoogle Scholar
  108. 108.
    H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)CrossRefGoogle Scholar
  109. 109.
    M. Hjiri, M.S. Aida, O.M. Lemine, L. El Mir, Study of defects in Li-doped ZnO thin films. Mater. Sci. Semicond. Process. 89, 149–153 (2019)CrossRefGoogle Scholar
  110. 110.
    S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk, S. Guermazi, Experiments on ZnO: Ni thin films with under 1% nickel content. Opt. Laser Technol. 69, 113–121 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H3N (CH2) 3NH3)[V4O10]. Mater. Res. Bull. 48, 1978–1983 (2013)CrossRefGoogle Scholar
  112. 112.
    R.M. Hill, A.K. Jonscher, DC and AC conductivity in hopping electronic systems. J. Non Cryst. Solids 32, 53–69 (1979)ADSCrossRefGoogle Scholar
  113. 113.
    V. Reddy, S. Das, S. Ray, A. Dhar, Studies on conduction mechanisms of pentacene based diodes using impedance spectroscopy. J. Phys. D. Appl. Phys. 40, 7687 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    J.D. Menczel, R.B. Prime, Thermal analysis of polymers: fundamentals and applications (Wiley, Hoboken, 2014)Google Scholar
  115. 115.
    B. Khalfallah, F. Chaabouni, G. Schmerber, A. Dinia, M. Abaab, Investigation of physico-chemical properties of conductive Ga-doped ZnO thin films deposited on glass and silicon wafers by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 28, 75–85 (2017)CrossRefGoogle Scholar
  116. 116.
    M.H. Lakhdar, B. Ouni, M. Amlouk, Dielectric relaxation, modulus behavior and conduction mechanism in Sb2S3 thin films. Mater. Sci. Semicond. Process. 19, 32–39 (2014)CrossRefGoogle Scholar
  117. 117.
    P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472–477 (2008)ADSCrossRefGoogle Scholar
  118. 118.
    T. Larbi, M.H. Lakhdar, A. Amara, B. Ouni, A. Boukhachem, A. Mater, M. Amlouk, Nickel content effect on the microstructural, optical and electrical properties of p-type Mn3O4 sprayed thin films. J. Alloy Compd. 626, 93–101 (2015)CrossRefGoogle Scholar
  119. 119.
    T. Nagata, T. Shimura, A. Ashida, N. Fujimura, T. Ito, Electro-optic property of ZnO: X (X = Li, Mg) thin films. J. Cryst. Growth. 237–239, 533–537 (2002)ADSCrossRefGoogle Scholar
  120. 120.
    P. Butcher, P. Morys, Exact solution of the AC hopping conductivity problem at low site densities. J. Phys. C Solid State Phys. 6, 2147 (1973)ADSCrossRefGoogle Scholar
  121. 121.
    R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. Boubaker, P. Petkova, M. Amlouk, Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO: Mn sprayed thin films compounds. J. Alloy Compd. 645, 100–111 (2015)CrossRefGoogle Scholar
  122. 122.
    T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, M. Amlouk, Electrical measurements of dielectric properties of molybdenum-doped zinc oxide thin films. Mater. Sci. Semicond. Process. 22, 50–58 (2014)CrossRefGoogle Scholar
  123. 123.
    K. Karoui, A.B. Rhaiem, K. Guidara, Dielectric properties and relaxation behavior of [TMA]2Zn0.5Cu0.5Cl4 compound. Phys. B Condens. Matter 407, 489–493 (2012)ADSCrossRefGoogle Scholar
  124. 124.
    A. Siaï, K.H. Naifer, M. Férid, An investigation into the dielectric and electrical properties of LaErO3 and LaHoO3 rare earth perovskites. J. Appl. Phys. 123, 035105 (2018)ADSCrossRefGoogle Scholar
  125. 125.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  126. 126.
    M. Ashokkumar, S. Muthukumaran, Effect of Cr-doping on dielectric, electric and magnetic properties of Zn0.96Cu0.04O nanopowders. Powder Technol. 268, 80–85 (2014)CrossRefGoogle Scholar
  127. 127.
    H.K. Rockstad, G. Pike, Comment on “ac conductivity of scandium oxide and a new hopping model for conductivity”. Phys. Rev. B 8, 4026 (1973)ADSCrossRefGoogle Scholar
  128. 128.
    S. Elliott, A theory of ac conduction in chalcogenide glasses. Phil. Mag. 36, 1291–1304 (1977)ADSCrossRefGoogle Scholar
  129. 129.
    G. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B 6, 1572 (1972)ADSCrossRefGoogle Scholar
  130. 130.
    A. Ghosh, N. Kumari, S. Tewari, A. Bhattacharjee, Structural, electrical and optical studies on ruthenium doped ZnO pellets for device applications. Mater. Sci. Eng. B 196, 7–14 (2015)CrossRefGoogle Scholar
  131. 131.
    N. Bagheri, M.H.M. Ara, N. Ghazyani, Characterization and doping effects study of high hole concentration Li-doped ZnO thin film prepared by sol–gel method. J. Mater. Sci. Mater. Electron. 27, 1293–1298 (2016)CrossRefGoogle Scholar
  132. 132.
    P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram. Int. 40, 11915–11923 (2014)CrossRefGoogle Scholar
  133. 133.
    M. Wang, E.J. Kim, S.H. Hahn, Photoluminescence study of pure and Li-doped ZnO thin films grown by sol–gel technique. J. Lumin. 131, 1428–1433 (2011)CrossRefGoogle Scholar
  134. 134.
    J. Lu, Y. Zhang, Z. Ye, Y. Zeng, H. He, L. Zhu, J. Huang, L. Wang, J. Yuan, B. Zhao, Control of p-and n-type conductivities in Li-doped ZnO thin films. Appl. Phys. Lett. 89, 112113 (2006)ADSCrossRefGoogle Scholar
  135. 135.
    T.A. Johny, V. Kumar, Influence of lithium substitution on the orange emission in manganese doped ZnO thin films. J. Mater. Sci. Mater. Electron. 25, 1456–1459 (2014)CrossRefGoogle Scholar
  136. 136.
    V. Bilgin, Preparation and characterization of ultrasonically sprayed zinc oxide thin films doped with lithium. J. Electron. Mater. 38, 1969–1978 (2009)ADSCrossRefGoogle Scholar
  137. 137.
    M. Wang, E.W. Shin, J.S. Chung, S.H. Hur, E.J. Kim, S.H. Hahn, K.-K. Koo, Tunable visible emission and warm white photoluminescence of lithium-doped zinc oxide thin films. J. Mater. Sci. 45, 4111–4114 (2010)ADSCrossRefGoogle Scholar
  138. 138.
    J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, p-Type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)CrossRefGoogle Scholar
  139. 139.
    X.-Y. Duan, R.-H. Yao, Y.-J. Zhao, The mechanism of Li, N dual-acceptor co-doped p-type ZnO. Appl. Phys. A 91, 467–472 (2008)ADSCrossRefGoogle Scholar
  140. 140.
    S. Ibrahim, S.M. Yasin, N.M. Nee, R. Ahmad, M.R. Johan, Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun. 152, 426–434 (2012)ADSCrossRefGoogle Scholar
  141. 141.
    K.H. Prasad, S. Subramanian, T.N. Sairam, G. Amarendra, E.S. Srinadhu, N. Satyanarayana, Structural, electrical and dielectric properties of nanocrystalline LiMgBO3 particles synthesized by Pechini process. J. Alloys Compd. 718, 459–470 (2017)CrossRefGoogle Scholar
  142. 142.
    A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloy Compd. 622, 687–694 (2015)CrossRefGoogle Scholar
  143. 143.
    K.M. Batoo, Study of dielectric and impedance properties of Mn ferrites. Phys. B Condens. Matter 406, 382–387 (2011)ADSCrossRefGoogle Scholar
  144. 144.
    D. Deger, K. Ulutaş, Ş. Yakut, H. Kara, Dielectric properties and ac conductivity of TlSbTe2 thin films. Mater. Sci. Semicond. Process. 38, 1–7 (2015)CrossRefGoogle Scholar
  145. 145.
    A.A.A. Darwish, M.M. El-Nahass, A.E. Bekheet, AC electrical conductivity and dielectric studies on evaporated nanostructured InSe thin films. J. Alloy Compd. 586, 142–147 (2014)CrossRefGoogle Scholar
  146. 146.
    S. Das, S. Das, S. Sutradhar, Enhanced dielectric behavior and ac electrical response in Gd–Mn–ZnO nanoparticles. J. Alloy Compd. 726, 11–21 (2017)CrossRefGoogle Scholar
  147. 147.
    M. El-Nahass, A. El-Deeb, F. Abd-El-Salam, Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine. Org. Electron. 7, 261–270 (2006)CrossRefGoogle Scholar
  148. 148.
    B. Tareev, B. Tareev, Physics of dielectric materials, vol. 90 (Mir Publ, Moscow, 1979)zbMATHGoogle Scholar
  149. 149.
    F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78, 639–648 (1974)CrossRefGoogle Scholar
  150. 150.
    B.G. Soares, M.E. Leyva, G.M.O. Barra, D. Khastgir, Dielectric behavior of polyaniline synthesized by different techniques. Eur. Polym. J. 42, 676–686 (2006)CrossRefGoogle Scholar
  151. 151.
    P. Macedo, The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohamed Salah
    • 1
    Email author
  • Samir Azizi
    • 1
    Email author
  • Abdelwaheb Boukhachem
    • 2
  • Chokri Khaldi
    • 1
  • Mosbah Amlouk
    • 2
  • Jilani Lamloumi
    • 1
  1. 1.Université de Tunis, ENSIT, LR99ES05MontfleuryTunisia
  2. 2.Faculté Des Sciences de Tunis, Unité de Physique Des Dispositifs à Semi-ConducteursUniversité de Tunis El ManarTunisTunisia

Personalised recommendations