Advertisement

Applied Physics A

, 125:613 | Cite as

Catalyst-free growth of ZnO nanowires: structural, optical, vibrational and field emission properties

  • Edgar MosqueraEmail author
  • Mauricio J. Morel
  • Jesús E. Diosa
Rapid communication
  • 21 Downloads

Abstract

High density of ZnO nanowires is grown over zinc foil by a catalyst-free thermal evaporation process. Electron microscopy studies confirmed that the as-grown nanowires are hexagonal wurtzite structure. The nanowires diameter was ~ 50 nm with typical length of the order of μm. Photoluminescence (PL) spectrum of the wires consist of a strong blue emission peak at 2.54 eV accompanied by other peaks of relatively lower intensities. The Raman spectra of the ZnO nanowires exhibit compressive stress due to the local heating effects during the synthesis. The field emission measurement indicated that ZnO nanowires have a turn-on field of 13.5 V/μm at current density of 0.001 μA/cm2.

Notes

Acknowledgements

The authors acknowledge the support of Universidad del Valle through of the projects C.I. 71152 and C.I.71154, and has benefited from access to equipment’s from the Universidad de Chile and Universidad Católica del Norte, Chile, and from the University of Puerto Rico, Puerto Rico, USA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: effects of ITO seed layer thickness. AIP Conf. Proc. 1756, 090004 (2016).  https://doi.org/10.1063/1.4958785 CrossRefGoogle Scholar
  2. 2.
    B. Cook, Q. Liu, J. Liu, M. Gong, D. Ewing, M. Casper, A. Stramel, J. Wu, Facile zinc oxide nanowire growth on graphene via hydrothermal floating method: Towards Debye length radius nanowires for ultraviolet photodetection. J. Mater. Chem. C. 5, 10087–10093 (2017).  https://doi.org/10.1039/C7TC03325G CrossRefGoogle Scholar
  3. 3.
    P.-H. Shih, S.Y. Wu, Growth mechanism studies of ZnO nanowires: Experimental observations and short-circuit diffusion analysis. Nanomaterials. 7, 188 (2017).  https://doi.org/10.3390/nano7070188 CrossRefGoogle Scholar
  4. 4.
    E. Mosquera, J. Bernal, R.A. Zarate, F. Mendoza, R.S. Katiyar, G. Morell, Growth and electron field-emission of single-crystalline ZnO nanowires. Mater. Lett. 93, 326–329 (2013).  https://doi.org/10.1016/j.matlet.2012.11.119 CrossRefGoogle Scholar
  5. 5.
    G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, Z.L. Wang, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23, 055604 (2012).  https://doi.org/10.1088/0957-4484/23/5/055604 ADSCrossRefGoogle Scholar
  6. 6.
    H. Chen, X. Wu, L. Gong, C. Ye, F. Qu, G. Shen, Hydrothermal grown ZnO micro/nanotube arrays and their properties. Nanoscale Res. Lett. 5, 570 (2009).  https://doi.org/10.1007/s11671-009-9506-4 ADSCrossRefGoogle Scholar
  7. 7.
    X. Zhang, L. Wang, G. Zhou, Synthesis of well-aligned ZnO nanowires without catalysts. Rev. Adv. Mater. Sci. 10, 69–72 (2005)Google Scholar
  8. 8.
    T. Ghoshal, S. Biswas, S. Kar, A. Dev, S. Chakrabarti, S. Chaudhuri, Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process. Nanotechnology 19, 065606–1–065606-11 (2008).  https://doi.org/10.1088/0957-4484/19/6/065606 CrossRefGoogle Scholar
  9. 9.
    X. Kong, C. Wei, Y. Zhu, P. Cohen, J. Dong, Characterization and modeling of catalyst-free carbon-assisted synthesis of ZnO nanowires. J. Manuf. Process. 32, 438–444 (2018).  https://doi.org/10.1016/j.jmapro.2018.03.018 CrossRefGoogle Scholar
  10. 10.
    G. Morell, A.G. Berríos, B.R. Weiner, S.J. Gupta, Synthesis, structure, and field emission properties of sulfur-doped nanocrystalline diamond. J. Mater. Sci. Mater. Electron. 17, 443–451 (2006).  https://doi.org/10.1007/s10854-006-8090-y CrossRefGoogle Scholar
  11. 11.
    A.G. Berríos, F. Piazza, G. Morell, Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research. J. Vac. Sci. Technol. B. 23, 645 (2005).  https://doi.org/10.1116/1.1849194 CrossRefGoogle Scholar
  12. 12.
    M.R. Khanlary, V. Vahedi, A. Reyhani, Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures. Molecules 17, 5021–5029 (2012).  https://doi.org/10.3390/molecules17055021 CrossRefGoogle Scholar
  13. 13.
    H.Y. Dang, J. Wang, S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 14, 738–741 (2003).  https://doi.org/10.1088/0957-4484/14/7/308 ADSCrossRefGoogle Scholar
  14. 14.
    K.P. Ghoderao, S.N. Jamble, R.B. Kale, Influence of pH on hydrothermally derived ZnO nanostructures. Optik 156, 758–771 (2018).  https://doi.org/10.1016/j.ijleo.2017.10.046 ADSCrossRefGoogle Scholar
  15. 15.
    T.M.K. Thandavan, S.M.A. Gani, Wong C. San, Nor RM Enhanced photoluminescence and Raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass. PLoS One 10(3), e0121756 (2015).  https://doi.org/10.1371/journal.pone.0121756 CrossRefGoogle Scholar
  16. 16.
    B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001).  https://doi.org/10.1063/1.1394173 ADSCrossRefGoogle Scholar
  17. 17.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. B. 199, 286–290 (2003).  https://doi.org/10.1016/S0168-583X(02)01425-8 ADSCrossRefGoogle Scholar
  18. 18.
    Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, Blue luminescent center in ZnO film deposited on silicon substrates. Opt. Mater. 26, 239–242 (2004).  https://doi.org/10.1016/j.optmat.2003.11.027 ADSCrossRefGoogle Scholar
  19. 19.
    T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142, 570 (1966).  https://doi.org/10.1103/PhysRev.142.570 ADSCrossRefGoogle Scholar
  20. 20.
    Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003).  https://doi.org/10.1063/1.1605808 ADSCrossRefGoogle Scholar
  21. 21.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97, 124313 (2005).  https://doi.org/10.1063/1.1944222 ADSCrossRefGoogle Scholar
  22. 22.
    J. He, X. Zheng, X. Hong, W. Wang, Y. Cao, T. Chen, L. Kong, Y. Wu, Z. Wu, J. Kang, Enhanced field emission of ZnO nanowires arrays by the control of their structures. Mater. Lett. 216, 182–184 (2018).  https://doi.org/10.1016/j.matlet.2017.12.134 CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, X. Song, Y. Chen, J. She, S. Deng, N. Xu, J. Chen, Controllable preparation of 1D and dendritic ZnO nanowires and their large area field-emission properties. J. Alloys Compd. 690, 304–314 (2017).  https://doi.org/10.1016/j.jallcom.2016.08.123 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad del ValleSantiago de CaliColombia
  2. 2.Centro de Excelencia en Nuevos Materiales, CENMUniversidad del ValleSantiago de CaliColombia
  3. 3.Instituto de Investigaciones Científicas y Tecnológicas, IDICTEC, Universidad de AtacamaCopiapóChile

Personalised recommendations