Advertisement

Applied Physics A

, 125:614 | Cite as

Investigation of magnetoelectric coupling effect in strongly ferroic oxide composites

  • Rutvi J. PandyaEmail author
  • Poornima Sengunthar
  • Sushant Zinzuvadiya
  • U. S. Joshi
Article
  • 11 Downloads

Abstract

The composites of (1 − x)Ba0.6Sr0.4TiO3 + (x)Ni0.5Zn0.5Fe2O4, i.e. (1 − x)BST + (x)NZF (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using double sintering solid-state reaction method. Temperature-dependent resistivity showed systematic metal to semiconducting transition behavior for all the samples except for the pure BST. From magnetic hysteresis characterization, values of saturation magnetization, coercivity, and remanence have been obtained and found to increase with doping of NZF into BST. In our earlier reported work, x = 0.4 sample came out with excellent dielectric properties. Here, for the same sample, i.e. x = 0.4, reasonable magnetic properties were observed. Lower values of magnetoelectric coupling coefficient may be ascribed to the leakage of charges through the comparatively lower resistant ferrite grains.

Notes

Acknowledgements

Authors thank Dr. O. F. Caltun, Alexandru Ioan Cuza University, Iasi, Romania for providing Magnetoelectric measurements. Authors also thank DST and UGC, India for providing financial support under FIST and DRS-SAP programs, respectively.

References

  1. 1.
    C.A.F. Vaz, J. Phys. Condens. Matter 24, 333201 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, J. Phys. Condens. Matter 20, 434220 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Khomskii, Physics (College. Park. Md) 2, 20 (2009)ADSGoogle Scholar
  5. 5.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  6. 6.
    R.R. Varma, P.S. Sengunthar, N.G. Joshi, M.R. Gadhvi, U.V. Chhaya, U.S. Joshi, Solid State Phenom. 209, 66 (2013)CrossRefGoogle Scholar
  7. 7.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 1 (2008)CrossRefGoogle Scholar
  8. 8.
    C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010)CrossRefGoogle Scholar
  9. 9.
    R.A.J. Born, J.V. Boomgaard, J. Mater. Sci. 13, 1538 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ostapchuk, J. Petzelt, J. Hlinka, V. Bovtun, P. Kužel, I. Ponomareva, S. Lisenkov, L. Bellaiche, A. Tkach, P. Vilarinho, J. Phys. Condens. Matter 21, 474215 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, J. Cryst. Growth 310, 4132 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    P. Bao, T.J. Jackson, X. Wang, M.J. Lancaster, J. Phys. D. Appl. Phys. 41, 063001 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    U.V. Chhaya, B.V. Mistry, K.H. Bhavsar, M.R. Gadhavi, V.K. Lakhani, K.B. Modi, U.S. Joshi, Indian J. Pure Appl. Phys. 12, 833 (2011)Google Scholar
  14. 14.
    B.K. Bammannavar, L.R. Naik, Smart Mater. Struct. 18, 065014 (2009)CrossRefGoogle Scholar
  15. 15.
    R.J. Pandya, U.S. Joshi, O.F. Caltun, Proc. Mater. Sci. 10, 168 (2015)CrossRefGoogle Scholar
  16. 16.
    D.S. Jeong, K.H. Ahn, W.Y. Park, C.S. Hwang, Appl. Phys. Lett. 84, 94 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    R. Kannan, S. Rajagopan, A. Arunkumar, D. Vanidha, R. Murugaraj, J. Appl. Phys. 112, 063926 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Goodenough, Phys. Rev. 117, 1442 (1960)ADSCrossRefGoogle Scholar
  19. 19.
    K.S. Aneeshkumar, R.N. Bhowmik, A.I.P. Conf, Proc. 1731, 1 (2016)Google Scholar
  20. 20.
    M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    U.V. Chhaya, R.G. Kulkarni, Mater. Lett. 39, 91 (1999)CrossRefGoogle Scholar
  22. 22.
    M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, I.H. Gul, J. Alloys Compd. 509, 5119 (2011)CrossRefGoogle Scholar
  23. 23.
    B.B.V.S. Vara Prasad, K.V. Ramesh, A. Srinivas, J. Supercond. Nov. Magn. 30, 3523 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Raju, S.R. Murthy, Appl. Nanosci. 3, 469 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    K.P. Pramoda, A. Huang, S.R. Shannigrahi, Ceram. Int. 37, 431 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 21, 115021 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    G. Catalan, Appl. Phys. Lett. 88, 1 (2006)CrossRefGoogle Scholar
  28. 28.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, J. Magn. Magn. Mater. 324, 3334 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Pandya, U.S. Joshi, Ceram. Int. 44, 21684 (2018)CrossRefGoogle Scholar
  30. 30.
    S.A. Lokare, R.S. Devan, B.K. Chougule, J. Alloys Compd. 454, 471 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Lal, M. Shandilya, A.S. Kumar, R. Rai, S.S. Nair, R. Palai, J. Mater. Sci. Mater. Electron. 29, 80 (2018)CrossRefGoogle Scholar
  32. 32.
    Z. Tang, Z. Zhang, J. Chen, S. Zhao, J. Alloys Compd. 696, 1 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Qiu, S. Zhao, Z. Wang, Mater. Lett. 170, 89 (2016)CrossRefGoogle Scholar
  34. 34.
    J.P. Zhou, L. Lv, Q. Liu, Y.X. Zhang, P. Liu, Sci. Technol. Adv. Mater. 13, 045001 (2012)CrossRefGoogle Scholar
  35. 35.
    C.M. Kanamadi, J.S. Kim, H.K. Yang, B.K. Moon, B.C. Choi, Appl. Phys. A Mater. Sci. Process. 97, 575 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceGujarat UniversityAhmedabadIndia

Personalised recommendations