Applied Physics A

, 125:602 | Cite as

Effects of Li2O–B2O3–SiO2–CaO–Al2O3 glass addition on the sintering behavior and microwave dielectric properties of Li3Mg2NbO6 ceramics

  • Wenwen Wang
  • Cheng LiuEmail author
  • Liang Shi
  • Gang Wang
  • Hongyang Zhang
  • Wenhao Xu
  • Huaiwu Zhang


Li3Mg2NbO6 ceramics modified with Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) glass additives were densified below 950 °C via a solid-state route. Single orthorhombic phase and dense morphology were obtained with the LBSCA glass introduction. Promising microwave dielectric properties, especially with an improved Q × f value, were obtained in the Li3Mg2NbO6 ceramics with 0.5 wt% of the LBSCA glass addition sintered at 925 °C for 4 h: εr = 15.16, Q × f = 90,557 GHz, τf = − 16.22 ppm/°C. It is suggested that the microwave dielectric performance was highly related to the densification, the polarizability, and the effects of the packing fraction. All experimental facts indicate that the LBSCA modified Li3Mg2NbO6 ceramics are potential candidates for Low-Temperature Co-fired Ceramic (LTCC) applications.



This work was supported by the National Natural Science Foundation of China (Grant nos. 51402041, 51672036), the National Key Scientific Instrument and Equipment Development Project (no. 51827802), and the Scientific Research Launch Foundation of UESTC (Grant no. ZYGX2016KYQD092).


  1. 1.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)Google Scholar
  2. 2.
    W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    H. Matsumoto, H. Tamura, K. Wakino, Ba(Mg, Ta)O3–BaSnO3 high-Q dielectric resonator. Jpn. J. Appl. Phys. 30, 2347–2349 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Wang, L. Li, S. Xiu, B. Shen, J. Zhai, Microwave dielectric properties of (Mg0.4Zn0.6)2SiO4–CaTiO3 ceramics sintered with Li2CO3–H3BO3 for LTCC technology. J. Alloys Compd 639, 359–364 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Ren, M. Dang, H. Wang, T. Xie, S. Jiang, H. Lin, L. Luo, Sintering behavior and microwave dielectric properties of B2O3–La2O3–MgO–TiO2 based glass-ceramic for LTCC applications. Mater. Lett. 210, 113–116 (2018)CrossRefGoogle Scholar
  7. 7.
    G.G. Yao, P. Liu, H.W. Zhang, Novel series of low-firing microwave dielectric ceramics: Ca5a4(VO4)6 (A2+ = Mg, Zn). J. Am. Ceram. Soc. 96, 1691–1693 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Zhang, Y. Zhao, Effects of structural characteristics on microwave dielectric properties of Li2Mg(Ti1 − xMnx)3O8 ceramics. J. Alloys Compd. 647, 386–391 (2015)CrossRefGoogle Scholar
  9. 9.
    H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1 − xCox)2SiO4 ceramics. Ceram. Int. 40, 14655–14659 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Feteira, D.C. Sinclair, Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics. J. Am. Ceram. Soc. 91, 1338–1341 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Liang, W.Z. Lu, Microwave dielectric properties of Li2TiO3 ceramics doped with ZnO–B2O3 frit. J. Am. Ceram. Soc. 92, 952–954 (2009)CrossRefGoogle Scholar
  12. 12.
    L.L. Yuan, J.J. Bian, Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 387, 123–129 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Zhang, R. Zuo, Effect of Li2O–V2O5 addition on the sintering behavior and microwave dielectric properties of Li3(Mg1 − xZnx)2NbO6 ceramics. Ceram. Int. 40, 15677–15684 (2014)CrossRefGoogle Scholar
  14. 14.
    P. Zhang, L. Liu, Y. Zhao, M. Xiao, Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application. J. Mater. Sci. Mater. Electron. 28, 5802–5806 (2017)CrossRefGoogle Scholar
  15. 15.
    G. Wang, H. Zhang, C. Liu, H. Su, J. Li, X. Huang, G. Gan, F. Xu, Low temperature sintering and microwave dielectric properties of novel temperature stable Li3Mg2NbO6-0.1TiO2 ceramics. Mater. Lett. 217, 48–51 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Liu, H. Zhang, G. Wang, T. Zhou, H. Su, L. Jia, L. Jin, J. Li, Y. Liao, Novel thermal-stable low temperature sintered Ba2LiMg2V3O12 microwave dielectric ceramics with ZnO–P2O5–MnO2 glass addition. Mater. Res. Bull. 93, 16–20 (2017)CrossRefGoogle Scholar
  17. 17.
    P. Zhang, H. Xie, Y. Zhao, X. Zhao, M. Xiao, Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics doped with Li2O–B2O3–SiO2 glass. J. Alloys Compd. 690, 688–691 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3–CuO addition. J. Eur. Ceram. Soc. 29, 1543–1546 (2009)CrossRefGoogle Scholar
  19. 19.
    T. Zhou, H. Zhang, C. Liu, L. Jin, F. Xu, Y. Liao, N. Jia, Y. Wang, G. Gan, H. Su, L. Jia, Li2O–B2O3–SiO2–CaO–Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology. Ceram. Int. 42, 16198–16204 (2016)CrossRefGoogle Scholar
  20. 20.
    B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  21. 21.
    M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  22. 22.
    G.C. Mather, R.I. Smith, J.M.S. Skakle, J.G. Fletcher, M.A. Castellanos, M.P. Gutierrez, A.R. West, Synthesis and structure of the partially ordered rock-salt phases, Li3M2XO6-M = Mg Co, Ni, X = Nb, Ta, Sb. J. Mater. Chem. 5, 1177–1182 (1995)CrossRefGoogle Scholar
  23. 23.
    Y.Y. Li, X.C. Lu, Y. Zhang, Y.Y. Zou, L.X. Wang, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Characterization of Co0.5(Ti1 − xZrx)0.5NbO4 microwave dielectric ceramics based on structural refinement. Ceram. Int. 43, 11516–11522 (2017)CrossRefGoogle Scholar
  24. 24.
    H.C. Yang, S.R. Zhang, H.Y. Yang, Y. Yuan, E.Z. Li, Structure stability, bond characteristics and microwave dielectric properties of co-substituted NdNbO4 ceramics. Ceram. Int. 45, 3620–3626 (2019)CrossRefGoogle Scholar
  25. 25.
    X.C. Fan, X.M. Chen, X.Q. Liu, Structural dependence of microwave dielectric properties of SrRAIO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study. Chem. Mater. 20, 4092–4098 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba(Mg, Zn1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Wang, H.W. Zhang, X. Huang, F. Xu, G.W. Gan, Y. Yang, D.D. Wen, J. Li, C. Liu, L.C. Jin, Correlations between the structural characteristics and enhancedmicrowave dielectric properties of V-modified Li3Mg2NbO6 ceramics. Ceram. Int. 44, 19295–19300 (2018)CrossRefGoogle Scholar
  28. 28.
    H.R. Zheng, S.H. Yu, L.X. Li, X.S. Lyu, Z. Sun, S.L. Chen, Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1 − x)MgMoO4 − xTiO2 composite ceramics. J. Eur. Ceram. Soc. 37, 4661–4665 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Zhang, Y. Zhao, L. Li, The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1 − xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, P. Zhang, Phase composition, crystal structure, complex chemical bond theory and microwave dielectric properties of high-Q materials in a (Nd1 − xYx)NbO4 system. RSC Adv. 5, 97746–97754 (2015)CrossRefGoogle Scholar
  31. 31.
    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793–8841 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    C.L. Huang, W.R. Yang, P.C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1 − xNix)3Nb2O8 ceramics. J. Eur. Ceram. Soc. 34, 277–284 (2014)CrossRefGoogle Scholar
  33. 33.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Fu, P. Liu, J. Ma, X. Zhao, H. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625–629 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Guo, S. Gong, G. Dou, D. Zhou, A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures. J. Alloys Compd. 509, 5988–5995 (2011)CrossRefGoogle Scholar
  36. 36.
    H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1 − XCoX)3TiO6 (0 ≤ X ≤ 0.4) ceramics. Ceram. Int. 43, 15018–15026 (2017)CrossRefGoogle Scholar
  37. 37.
    C. Luo, Y. Hu, S. Bao, T. Hong, L. Ai, J. Chen, Z. Duan, Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics. J. Mater. Sci. Mater. Electron. 29, 15523–15528 (2018)CrossRefGoogle Scholar
  38. 38.
    G. Wang, D.N. Zhang, Y.M. Lai, X. Huang, Y. Yang, G.W. Gan, F. Xu, Q.Q. Wang, J. Li, C. Liu, L.C. Jin, Y.L. Liao, H.W. Zhang, Ultralow loss and temperature stability of Li3Mg2NbO6 − xLiF ceramics with low sintering temperature. J. Alloys Compd. 782, 370–374 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations