Advertisement

Applied Physics A

, 125:621 | Cite as

Dielectric constant and electrical study of solid-state electrolyte lithium phosphate glasses

  • Khalil J. HamamEmail author
  • Fathy Salman
Article
  • 39 Downloads

Abstract

A detailed analysis of dielectric response and electrical properties of lithium phosphate glasses (LiPO3) as a function of temperature from 20 °C (room temperature) to 170 °C and frequency from 4 Hz to 4 MHz was done using impedance spectroscopy technique. X-ray diffraction (XRD) and differential scanning calorimetry were used to study the structure phase and thermal analysis of the material under investigation, respectively. XRD pattern confirms the amorphous nature of the material. The total conductivity shows two distinct regions, dc conductivity and ac conductivity (σtot(ω) = σdc + A ωr). The ac conductivity’s exponent factor r was found invariant at low-temperature zone and temperature dependent at high-temperature zone. The frequency exponent factor values and its temperature dependence suggested that the jump relaxation model is the best model that can describe the conduction mechanism. Various parameters such as bulk conductivity, dc conductivity, dielectric relaxation time, transition time and the associated activation energies were calculated and discussed. The activation energy of bulk conductivity, dc conductivity and the dielectric relaxation was found to have similar value (0.29 eV). Thermodynamic parameters, such as free energy of activation (ΔF), enthalpy of activation (ΔH) and entropy of activation (ΔS), have been calculated and discussed as well.

Notes

References

  1. 1.
    R. Vergaz, D. Barrios, J.M. Sánchez-Pena, C. Pozo-Gonzalo, M. Salsamendi, J.A. Pomposo, Impedance analysis and equivalent circuit of an all-plastic viologen based electrochromic device. Displays 29, 401–407 (2008).  https://doi.org/10.1016/j.displa.2007.12.005 CrossRefGoogle Scholar
  2. 2.
    H.L. Tuller, M.W. Barsoum, Glass solid electrolytes: past, present and near future—the year 2004. J. Non Cryst. Solids 73, 331–350 (1985).  https://doi.org/10.1016/0022-3093(85)90358-8 ADSCrossRefGoogle Scholar
  3. 3.
    L. Bih, H. Bih, M. Amalhay, H. Mossadik, A. Elbouari, B. Belhorma, M.P.F. Graça, M.A. Valente, Phosphate glass-glasses as new energy density dielectric materials. Procedia Eng. 83, 371–377 (2014).https://doi.org/10.1016/j.proeng.2014.09.030 CrossRefGoogle Scholar
  4. 4.
    I. Jlassi, N. Sdiri, H. Elhouichet, M. Ferid, Raman and impedance spectroscopy methods of P2O5–Li2O–Al2O3 glass system doped with MgO. J. Alloys Compd. 645, 125–130 (2015).  https://doi.org/10.1016/j.jallcom.2015.05.025 CrossRefGoogle Scholar
  5. 5.
    E.A. Abou Neel, V. Salih, J.C. Knowles, 1.18 Phosphate-based glasses. Compr. Biomater. II, 1(1), 392–405 (2017).  https://doi.org/10.1016/b978-0-08-100691-7.00253-6 CrossRefGoogle Scholar
  6. 6.
    A.R. Boccaccini, J.E. Gough, Tissue engineering using ceramics and polymers (Woodhead Publishing Limited, 2007). https://doi.org/10.1533/9781845693817 CrossRefGoogle Scholar
  7. 7.
    E.A. Abou Neel, J.C. Knowles, Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 19, 377–386 (2008). https://doi.org/10.1007/s10856-007-3079-5 Google Scholar
  8. 8.
    P. Knauth, Inorganic solid Li ion conductors: An overview. Solid State Ionics 180, 911–916 (2009).  https://doi.org/10.1016/j.ssi.2009.03.022 CrossRefGoogle Scholar
  9. 9.
    B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6,749–753 (2007). https://doi.org/10.1038/nmat2007 ADSCrossRefGoogle Scholar
  10. 10.
    M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab, Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A. 2, 5470–5480 (2014).  https://doi.org/10.1039/c3ta15087a CrossRefGoogle Scholar
  11. 11.
    A. Hayashi, R. Komiya, M. Tatsumisago, T. Minami, Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries, in: Solid State Ionics, 2002: pp. 285–290.  https://doi.org/10.1016/S0167-2738(02)00313-2.CrossRefGoogle Scholar
  12. 12.
    E. Kartini, T.Y.S. Panca Putra, I. Kuntoro, T. Sakuma, K. Basar, O. Kamishima, J. Kawamura, Recent studies on lithium solid electrolytes (LiI)x (LiPO 3 )1- x for secondary battery. J. Phys. Soc. Jpn. 79, 54–58 (2010). https://doi.org/10.1143/JPSJS.79SA.54 CrossRefGoogle Scholar
  13. 13.
    L. Bih, Electronic and ionic conductivity of glasses inside the Li2O–MoO3–P2O5 system. Solid State Ionics 132, 71–85 (2000).  https://doi.org/10.1016/S0167-2738(00)00697-4 CrossRefGoogle Scholar
  14. 14.
    Y.K. Startsev, A.A. Pronkin, I.A. Sokolov, I.V. Murin, Nature of current carriers and electric properties of glasses in xAg2O · (0.2 − x)Tl2O · 0.8B2O3 system. Glass Phys. Chem. 39, 32–44 (2013). https://doi.org/10.1134/S1087659613010124 CrossRefGoogle Scholar
  15. 15.
    K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, Y.K. Startsev, A.A.A. Pronkin, I.A.A. Sokolov, I.V.V. Murin, H.-D. Wiemhöfer, A.A.A. Pronkin, Electric conductivity and the nature of electric current carriers in the PbF2-2PbO · SiO2 glasses. Glass Phys. Chem. 39, 32–44 (2013).  https://doi.org/10.1134/S1087659613010124 CrossRefGoogle Scholar
  16. 16.
    K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure. Solid State Ionics 233, 95–101 (2013).  https://doi.org/10.1016/j.ssi.2012.12.013 CrossRefGoogle Scholar
  17. 17.
    R.K. Brow, Review: the structure of simple phosphate glasses. J. Non Cryst. Solids 263–264, 1–28 (2000).  https://doi.org/10.1016/S0022-3093(99)00620-1 ADSCrossRefGoogle Scholar
  18. 18.
    U. Hoppe, A structural model for phosphate glasses. J. Non Cryst. Solids 195, 138–147 (1996).  https://doi.org/10.1016/0022-3093(95)00524-2 ADSCrossRefGoogle Scholar
  19. 19.
    P.K. Gupta, Non-crystalline solids: Glasses and amorphous solids. J. Non Cryst. Solids 195, 158–164 (1996).  https://doi.org/10.1016/0022-3093(95)00502-1 ADSCrossRefGoogle Scholar
  20. 20.
    P. Hockicko, J. Kudelcik, F. Munoz, L. Munoz-Senovilla, Electrical properties of LiPO3 glasses. In: 10th Int. Conf. ELEKTRO 2014—Proc (2014), pp. 654–657. https://doi.org/10.1109/ELEKTRO.2014.6848981
  21. 21.
    P. Dabas, V. Subramanian, K. Hariharan, Effect of quenching rate on the structure, ion transport, and crystallization kinetics in lithium-rich phosphate glass. J. Mater. Sci. 49(1), 134–141 (2014). https://doi.org/10.1007/s10853-013-7686-x ADSCrossRefGoogle Scholar
  22. 22.
    D. Crespo, P. Bruna, A. Valles, E. Pineda, Phonon dispersion relation of metallic glasses. Phys. Rev. B. 94, 144205 (2016).  https://doi.org/10.1103/PhysRevB.94.144205 ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D. Appl. Phys. 32 (1999). https://doi.org/10.1088/0022-3727/32/14/201 ADSCrossRefGoogle Scholar
  24. 24.
    R.J. Barczyński, P. Król, L. Murawski, Ac and dc conductivities in V2O5-P2O 5 glasses containing alkaline ions. J. Non Cryst. Solids 356, 37–40 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.07.001 CrossRefGoogle Scholar
  25. 25.
    S. Mahboob, G. Prasad, G.S. Kumar, Impedance and a.c. conductivity studies on Ba(Nd0.2Ti 0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Bull. Mater. Sci. 29, 347–355 (2006). https://doi.org/10.1007/BF02704134 CrossRefGoogle Scholar
  26. 26.
    A.A.A. Youssef, The permittivity and ac conductivity of the layered Perovskite [(CH3)(C6H5)3P]2Hgl4, Zeitschrift Fur Naturforsch. Sect. A J. Phys. Sci. 57, 263–269 (2002). https://doi.org/10.1515/zna-2002-0510
  27. 27.
    M. Cutroni, A. Mandanici, P. Mustarelli, C. Tomasi, M. Federico, Ionic conduction and dynamical regimes in silver phosphate glasses. J. Non Cryst. Solids 307–310 (2002). https://doi.org/10.1016/S0022-3093(02)01561-2 ADSCrossRefGoogle Scholar
  28. 28.
    D.P. Singh, K. Shahi, K.K. Kar, Superlinear frequency dependence of AC conductivity and its scaling behavior in xAgI-(1–x) AgPO3 glass superionic conductors. Solid State Ionics 287, 89–96 (2016).  https://doi.org/10.1016/j.ssi.2016.01.048 CrossRefGoogle Scholar
  29. 29.
    A.A. Saif, P. Poopalan, Correlation between the chemical composition and the conduction mechanism of barium strontium titanate thin films. J. Alloys Compd. 509, 7210–7215 (2011).  https://doi.org/10.1016/j.jallcom.2011.04.068 CrossRefGoogle Scholar
  30. 30.
    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993).  https://doi.org/10.1016/0079-6786(93)90002-9 CrossRefGoogle Scholar
  31. 31.
    K.L. Ngai, H. Jain, O. Kanert, Physical origins of the ω1.0-dependent and the ωq-dependent (q ≈ 1.3) contributions to the conductivity relaxation of glassy ionic conductors. J. Non Cryst. Solids. 222, 383–390 (2004). https://doi.org/10.1016/s0022-3093(97)90140-x ADSCrossRefGoogle Scholar
  32. 32.
    S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971 ADSCrossRefGoogle Scholar
  33. 33.
    A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982).  https://doi.org/10.1080/00018738200101418 ADSCrossRefGoogle Scholar
  34. 34.
    K. Funke, Jump relaxation model and coupling model - a comparison. J. Non Cryst. Solids. 172–174, 1215–1221 (1994).  https://doi.org/10.1016/0022-3093(94)90646-7 ADSCrossRefGoogle Scholar
  35. 35.
    R. Vaish, K.B.R. Varma, Dielectric properties of Li2O–3B2O3 glasses. J. Appl. Phys. 106, 064106 (2009).  https://doi.org/10.1063/1.3225583 ADSCrossRefGoogle Scholar
  36. 36.
    D.P. Almond, G.K. Duncan, A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8, 159–164 (1983).  https://doi.org/10.1016/0167-2738(83)90079-6 CrossRefGoogle Scholar
  37. 37.
    A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12, 2148–2154 (2010).  https://doi.org/10.1016/j.solidstatesciences.2010.09.016 ADSCrossRefGoogle Scholar
  38. 38.
    F. Munoz, A. Duran, L. Pascual, L. Montagne, B. Revel, A. Rodrigues, Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179, 574–579 (2008).  https://doi.org/10.1016/j.ssi.2008.04.004 CrossRefGoogle Scholar
  39. 39.
    S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer (Guildf). 8, 161–210 (1967).  https://doi.org/10.1016/0032-3861(67)90021-3 CrossRefGoogle Scholar
  40. 40.
    K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941). https://doi.org/10.1063/1.1750906 CrossRefGoogle Scholar
  41. 41.
    J.G. Powles, Dielectric relaxation and the internal field. J. Chem. Phys. 21, 633 (1953). https://doi.org/10.1063/1.1698980 ADSCrossRefGoogle Scholar
  42. 42.
    M.F. Kotkata, F.A. Abdel-Wahab, H.M. Maksoud, Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films. J. Phys. D. Appl. Phys. 39(10)(2006). https://doi.org/10.1088/0022-3727/39/10/013 ADSCrossRefGoogle Scholar
  43. 43.
    N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Dielectric studies of nanocrystalline nickel–cobalt oxide. Phys. B Condens. Matter 399, 1–8 (2007).  https://doi.org/10.1016/j.physb.2007.03.037 ADSCrossRefGoogle Scholar
  44. 44.
    F.E. Salman, N. Shash, H. Abou El-Haded, M.K. El-Mansy, Electrical conduction and dielectric properties of vanadium phosphate glasses doped with lithium. J. Phys. Chem. Solids. 63(11) (2002). https://doi.org/10.1016/S0022-3697(02)00164-6 ADSCrossRefGoogle Scholar
  45. 45.
    P.B. Macedo, C.T. Moynihan, R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glass 13, 171–179 (1972).  https://doi.org/10.4236/ns.2014.66038 CrossRefGoogle Scholar
  46. 46.
    P. Debye, Polar molecules (Chemical Catalog Co., Inc., New York, 1929), pp. 172. https://doi.org/10.1002/jctb.5000484320[J. Soc. Chem. Ind. 48 (2007) 1036–1037]
  47. 47.
    S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of I Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st edn. (McGraw-Hill, New York, 1941), pp. 13–15.  https://doi.org/10.1038/149509a0 (introduction)CrossRefGoogle Scholar
  48. 48.
    H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).  https://doi.org/10.1063/1.1749836 ADSCrossRefGoogle Scholar
  49. 49.
    H. A. Hashem, S. Abouelhassan, Physics, dielectric and thermodynamic properties of tin (II) sulfide thin films. Chin. J. Phys. 43, 955–966 (2005)Google Scholar
  50. 50.
    K.K. Srivastava, A. Kumar, O.S. Panwar, K.N. Lakshminarayan, Dielectric relaxation study of chalcogenide glasses. J. Non Cryst. Solids 33, 205–224 (1979).  https://doi.org/10.1016/0022-3093(79)90050-4 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Physics DepartmentTafila Technical UniversityTafilaJordan
  2. 2.Physics DepartmentUniversity of BanhaBanhaEgypt

Personalised recommendations