Advertisement

Applied Physics A

, 125:544 | Cite as

Femtosecond laser-assisted synthesis of Ni/Au BONs in various alcoholic solvents

  • Niusha LasemiEmail author
  • Christian Rentenberger
  • Robert Pospichal
  • Alexey S. Cherevan
  • Martin Pfaffeneder-Kmen
  • Gerhard Liedl
  • Dominik Eder
S.I.: New Frontiers in Laser Interaction
  • 92 Downloads

Abstract

Crystalline Ni/Au bimetallic oxide nanoparticles with various forms of crystallographic systems and defects were generated by femtosecond laser ablation of nickel–gold target in alcoholic solvents. The nature of the liquid can influence the chemical composition, stability, and size distribution of laser-synthesized nanoparticles. In ethanol, bimodal crystalline bimetallic Ni/Au oxide nanoparticles with median size of 15 nm were synthesized. The laser ablation of Ni/Au target in isopropanol and butanol led to nearly monomodal size distribution with median size of 10 and 13 nm, respectively. High-resolution transmission electron microscopy of Ni/Au oxide nanoparticles in butanol, revealed a graphitic shell of a few atomic layers. In this context, two suggested mechanisms were considered. First of all, the high photon intensity of femtosecond laser pulses can induce direct photolysis of liquid media. Secondly, the formation of supercritical temperature solvent due to the interaction of solvent with molten metal layer at liquid–metal interface can trigger pyrolysis of solvent. These mechanisms can contribute to butanol decomposition and encapsulation of Ni/Au oxide bimetallic nanoparticles with graphite shell. Graphite shell can create a better colloidal stability by preventing nanoparticles from further growth and agglomeration.

Notes

Acknowledgements

Partial financial support for Ni/Au target preparation by physical chemistry department of Vienna University is gratefully acknowledged. The authors gratefully appreciate Prof. Dr. Herbert Hutter at surface analysis center for providing IONTOF system. The authors also acknowledge Dipl.-Ing. Fabian Bohrn for operating IONTOF and measuring gold thickness on nickel target.

References

  1. 1.
    D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)CrossRefGoogle Scholar
  2. 2.
    V.S.D. Oliveira, F.R. Henrique, I.L. Graff, W.H. Schreiner, J.A.G. Bezerra, Green synthesis of sub-10 nm gold nanoparticles by two-step laser irradiation. in 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA (2012), pp. 1–2Google Scholar
  3. 3.
    M.C. Sportelli, M. Izzi, A. Volpe, M. Clemente, R.A. Picca, A. Ancona, P.M. Lugarà, G. Palazzo, N. Cioffi, The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics (Basel, Switzerland) 7, 67 (2018)Google Scholar
  4. 4.
    P.P. Patil, D.M. Phase, S.A. Kulkarni, S.V. Ghaisas, S.K. Kulkarni, S.M. Kanetkar, S.B. Ogale, V.G. Bhide, Pulsed-laser-induced reactive quenching at liquid–solid interface: aqueous oxidation of iron. Phys. Rev. Lett. 58, 238–241 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    F. Mafune, J.-Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111–9117 (2000)CrossRefGoogle Scholar
  6. 6.
    A.V. Kabashin, M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941–7943 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Brikas, S. Barcikowski, B. Chichkov, G. Račiukaitis, Production of nanoparticles with high repetition rate picosecond laser. J. Laser Micro Nanoeng. 2, 230–233 (2007)CrossRefGoogle Scholar
  8. 8.
    D. Bäuerle, Laser processing and chemistry, 4th edn. (Springer, Berlin, 2011)CrossRefGoogle Scholar
  9. 9.
    S.C. Singh, H.B. Zeng, C. Guo, W. Cai, Nanomaterials: Processing and Characterization with Lasers (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2012)CrossRefGoogle Scholar
  10. 10.
    G. Yang, Laser Ablation in Liquids, Principles and Applications in the Preparation of Nanomaterials (Pan Stanford Publishing, Redwood, 2012)CrossRefGoogle Scholar
  11. 11.
    S. Barcikowski, G. Compagnini, Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15, 3022–3026 (2013)CrossRefGoogle Scholar
  12. 12.
    N. Lasemi, U. Pacher, C. Rentenberger, O. Bomatí-Miguel, W. Kautek, Laser-assisted synthesis of colloidal Ni/NiOx core/shell nanoparticles in water and alcoholic solvents. ChemPhysChem 18, 1118–1124 (2017)CrossRefGoogle Scholar
  13. 13.
    N. Lasemi, O. Bomatí-Miguel, R. Lahoz, V.V. Lennikov, U. Pacher, C. Rentenberger, W. Kautek, Laser-assisted synthesis of colloidal FeWxOy and Fe/FexOy nanoparticles in water and ethanol. ChemPhysChem 19, 1414–1419 (2018)CrossRefGoogle Scholar
  14. 14.
    N. Najafianpour, D. Dorranian, Properties of graphene/Au nanocomposite prepared by laser irradiation of the mixture of individual colloids. Appl. Phys. A 124, 805 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    K.C. Phillips, H.H. Gandhi, E. Mazur, S.K. Sundaram, Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7, 684–712 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    G. Merga, L.C. Cass, D.M. Chipman, D. Meisel, Probing silver nanoparticles during catalytic H2 evolution. J. Am. Chem. Soc. 130, 7067–7076 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008)CrossRefGoogle Scholar
  19. 19.
    S.P. Murzin, G. Liedl, R. Pospichal, A.A. Melnikov, Study of the action of a femtosecond laser beam on samples of a Cu–Zn alloy. J. Phys. Conf. Ser. 1096, 012138 (2018)CrossRefGoogle Scholar
  20. 20.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  21. 21.
    Y.V. Afanasiev, B.N. Chichkov, N.N. Demchenko, V.A. Isakov, I.N. Zavestovskaia, Extended two-temperature model of laser ablation of metals. Proc. SPIE 4065, 349–354 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Metal ablation with short and ultrashort laser pulses. Phys. Procedia 12, 230–238 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    L. Jiang, A.-D. Wang, B. Li, T.-H. Cui, Y.-F. Lu, Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018)CrossRefGoogle Scholar
  24. 24.
    R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger, Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches. Adv. Opt. Technol. 2008, 8 (2008)CrossRefGoogle Scholar
  25. 25.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    P. Wagener, J. Jakobi, C. Rehbock, V.S.K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienle, S. Barcikowski, Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci. Rep. 6, 23352 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.C. Kieffer, O. Nada, I. Brunette, Wavelength dependence of femtosecond laser ablation threshold of corneal stroma. Opt. Express 16, 4121–4129 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    D. Riabinina, M. Chaker, J. Margot, Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnology 23, 135603 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A. Vogel, J. Noack, G. Hüttman, G.J.A.P.B. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    J. Noack, A. Vogel, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35, 1156–1167 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Hu, J. Sanderson, A.A. Zaidi, C. Wang, T. Zhang, Y. Zhou, W.W. Duley, Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation. Carbon 46, 1823–1825 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Bajaj, R.K. Soni, Effect of liquid medium on size and shape of nanoparticles prepared by pulsed laser ablation of tin. Appl. Phys. A 97, 481–487 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    P. Srinoi, Y.-T. Chen, V. Vittur, M.D. Marquez, T.R. Lee, Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 8(7), 1106 (2018).  https://doi.org/10.3390/app8071106 CrossRefGoogle Scholar
  35. 35.
    L. Rout, A. Kumar, R.S. Dhaka, P. Dash, Bimetallic Ag–Cu alloy nanoparticles as a highly active catalyst for the enamination of 1,3-dicarbonyl compounds. RSC Adv. 6, 49923–49940 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Neumeister, J. Jakobi, C. Rehbock, J. Moysig, S. Barcikowski, Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys. Chem. Chem. Phys. 16, 23671–23678 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, D.N. Oko, S. Garbarino, R. Imbeault, M. Chaker, A.C. Tavares, D. Guay, D. Ma, Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J. Phys. Chem. C 116, 13413–13420 (2012)CrossRefGoogle Scholar
  38. 38.
    D.D. Radev, Nickel-containing alloys for medical application obtained by methods of mechanochemistry and powder metallurgy. ISRN Metall 2012, 6 (2012)CrossRefGoogle Scholar
  39. 39.
    B.D. Chandler, C.G. Long, J.D. Gilbertson, C.J. Pursell, G. Vijayaraghavan, K.J. Stevenson, Enhanced oxygen activation over supported bimetallic Au–Ni catalysts. J. Phys. Chem. C 114, 11498–11508 (2010)CrossRefGoogle Scholar
  40. 40.
    L. Lang, Z. Pan, J. Yan, Ni–Au alloy nanoparticles as a high performance heterogeneous catalyst for hydrogenation of aromatic nitro compounds. J. Alloys Compd. 792, 286–290 (2019)CrossRefGoogle Scholar
  41. 41.
    S. Moradi, P.A. Azar, N. Lasemi, Preparation of nickel nanoparticles under ultrasonic irradiation. J. Appl. Chem. Res. 2, 43–51 (2008)Google Scholar
  42. 42.
    C.-Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 489, 3–17 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    D.M. Mattox, Physical vapor deposition (PVD) processes. Met. Finish. 98, 410–423 (2000)CrossRefGoogle Scholar
  44. 44.
    A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, A. Apolonski, Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. Opt. Lett. 29, 1366–1368 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    J.-C.M. Diels, J.J. Fontaine, I.C. McMichael, F. Simoni, Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 24, 1270–1282 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Jee, M.F. Becker, R.M. Walser, Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B 5, 648–659 (1988)ADSCrossRefGoogle Scholar
  48. 48.
    M. Wollenhaupt, A. Assion, T. Baumert, Short and ultrashort laser pulses, in Springer Handbook of Lasers and Optics, ed. by F. Träger (Springer, Berlin, 2012), pp. 1047–1094CrossRefGoogle Scholar
  49. 49.
    X. Yibin, Y. Masayoshi, V. Pierre, Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11RH02 (2011)CrossRefGoogle Scholar
  50. 50.
    A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 15, 3083–3092 (2013)CrossRefGoogle Scholar
  51. 51.
    M.-R. Kalus, N. Barsch, R. Streubel, E. Gokce, S. Barcikowski, B. Gokce, How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids—quantification of their volume, dwell dynamics, and gas composition. Phys. Chem. Chem. Phys. 19, 7112–7123 (2017)CrossRefGoogle Scholar
  52. 52.
    A. Hahn, S. Barcikowski, B.N. Chichkov, Influences on nanoparticle production during pulsed laser ablation. J. Laser Micro Nanoeng. 3, 73–77 (2008)CrossRefGoogle Scholar
  53. 53.
    E. Whitley, J. Ball, Statistics review 1: presenting and summarising data. Crit. Care 6, 66–71 (2002)CrossRefGoogle Scholar
  54. 54.
    P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys. 15, 3068–3074 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, S. Barcikowski, Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle X-ray scattering. Appl. Phys. Lett. 101, 103104 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    S. Ibrahimkutty, P. Wagener, T.D.S. Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid. Sci. Rep. 5, 16313 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    C. Gammer, C. Mangler, C. Rentenberger, H.P. Karnthaler, Quantitative local profile analysis of nanomaterials by electron diffraction. Scripta Mater. 63, 312–315 (2010)CrossRefGoogle Scholar
  58. 58.
    J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, M.O. Thompson, Complete experimental test for kinetic models of rapid alloy solidification. Acta Mater. 48, 4797–4811 (2000)CrossRefGoogle Scholar
  59. 59.
    M. Bienzle, T. Oishi, F. Sommer, Thermodynamics and local atomic arrangements of gold-nickel alloys. J. Alloys Compd. 220, 182–188 (1995)CrossRefGoogle Scholar
  60. 60.
    A.A. Ilyin, S.S. Golik, Femtosecond laser-induced breakdown spectroscopy of sea water. Spectrochim. Acta Part B 87, 192–197 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    V. Amendola, G.A. Rizzi, S. Polizzi, M. Meneghetti, Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. J. Phys. Chem. B 109, 23125–23128 (2005)CrossRefGoogle Scholar
  62. 62.
    M.G. John, K.M. Tibbetts, One-step femtosecond laser ablation synthesis of sub-3 nm gold nanoparticles stabilized by silica. Appl. Surf. Sci. 475, 1048–1057 (2019)ADSCrossRefGoogle Scholar
  63. 63.
    O. Baranov, S. Xu, K. Ostrikov, B.B. Wang, U. Cvelbar, K. Bazaka, I. Levchenko, Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. J. Rev. Mod. Plasma Phys. 2, 4 (2018)ADSCrossRefGoogle Scholar
  64. 64.
    I. Levchenko, K. Bazaka, M. Keidar, S. Xu, J. Fang, Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale. Adv. Mater. 30, 1702226 (2018)CrossRefGoogle Scholar
  65. 65.
    V. Amendola, M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11, 3805–3821 (2009)CrossRefGoogle Scholar
  66. 66.
    V. Amendola, P. Riello, M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C 115, 5140–5146 (2011)CrossRefGoogle Scholar
  67. 67.
    H.Y. Kwong, M.H. Wong, C.W. Leung, Y.W. Wong, K.H. Wong, Formation of core/shell structured cobalt/carbon nanoparticles by pulsed laser ablation in toluene. J. Appl. Phys. 108, 034304 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, F. Giammanco, M. Muniz-Miranda, S. Caporali, Physico-chemical properties of Pd nanoparticles produced by pulsed laser ablation in different organic solvents. Appl. Surf. Sci. 258, 3289–3297 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    V.Y. Bychkov, Y.P. Tyulenin, A.A. Firsova, E.A. Shafranovsky, A.Y. Gorenberg, V.N. Korchak, Carbonization of nickel catalysts and its effect on methane dry reforming. Appl. Catal. A 453, 71–79 (2013)CrossRefGoogle Scholar
  70. 70.
    N. Lasemi, U. Pacher, L.V. Zhigilei, O. Bomatí-Miguel, R. Lahoz, W. Kautek, Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air. Appl. Surf. Sci. 433, 772–779 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    A. Lima da Silva, I.L. Müller, Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): thermodynamic modelling. Int. J. Hydrog. Energy 36, 2057–2075 (2011)CrossRefGoogle Scholar
  72. 72.
    D. Werner, S. Hashimoto, T. Tomita, S. Matsuo, Y. Makita, Examination of silver nanoparticle fabrication by pulsed-laser ablation of flakes in primary alcohols. J. Phys. Chem. C 112, 1321–1329 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials ChemistryVienna University of TechnologyViennaAustria
  2. 2.Center for Nanostructure Research, Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Institute for Production Engineering and Laser TechnologyVienna University of TechnologyViennaAustria
  4. 4.Department of Physical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations