Skip to main content
Log in

Magnetic and hyperthermia properties of Ni1−xCux nanoparticles coated with oleic acid and silica prepared via sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the magnetic and magnetothermal properties of functionalized Ni1−xCux nanoparticles prepared by the sol–gel method, with x = 0.20–0.28 and having a size less than 10 nm. Zero-field-cooled thermal demagnetization measurements show that the Curie temperature can be brought into therapeutic range (315–320 K) by Cu substitution in Ni1−xCux alloys. An aqueous suspension of selected composition Ni0.73Cu0.27 milled for 30, 60, 80, and 120 min was made using acrypol 934 polymers. NPs milled for 120 min remained suspended for 10 h. The specific loss power (SLP) generated by magnetic nanoparticles was found to be 1.6 W/g for x = 0.20 and 0.6 W/g for x = 0.28. The SLP values of functionalized Ni0.73Cu0.27 NPs for powder, as well as aqueous suspensions, show a quadratic dependence at a magnetic field up to 180 Oe at a fixed frequency of 425 kHz, respectively. The obtained SLP values for fluid Ni0.73Cu0.27 NPs lie in the range of 12–25 W/g. The linear response theory was used to calculate the effective anisotropy constant of Ni1−xCux (x = 0.20 to 0.28) NPs coated with oleic acid and is found to lie within the range 2–3 × 104 J/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Liu, F. Kiessling, J. Gätjens, Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J. Nanomater. 2010, 51 (2010)

    Google Scholar 

  2. R. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)

    ADS  Google Scholar 

  3. B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214 (2005)

    ADS  Google Scholar 

  4. A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999)

    ADS  Google Scholar 

  5. M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007)

    Google Scholar 

  6. J.H. Grossman, S.E. McNeil, Nanotechnology in cancer medicine. Phys. Today 65, 38 (2012)

    Google Scholar 

  7. S. Čampelj, D. Makovec, M. Drofenik, Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J. Magn. Magn. Mater. 321, 1346–1350 (2009)

    ADS  Google Scholar 

  8. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Google Scholar 

  9. R.A. Frimpong, J.Z. Hilt, Poly (n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization. Nanotechnology 19, 175101 (2008)

    ADS  Google Scholar 

  10. M. Thakur, K. De, S. Giri, S. Si, A. Kotal, T. Mandal, Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J. Phys.: Condens. Matter 18, 9093 (2006)

    ADS  Google Scholar 

  11. M. Mahmoudi, A. Simchi, A. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 336, 510–518 (2009)

    ADS  Google Scholar 

  12. D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, M. Toyoda, Application of magnetic nanoparticles to gene delivery. Int. J. Mol. Sci. 12, 3705–3722 (2011)

    Google Scholar 

  13. S. Larumbe, C. Gomez-Polo, J. Pérez-Landazábal, J. Pastor, Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. J. Phys.: Condens. Matter 24, 266007 (2012)

    ADS  Google Scholar 

  14. W. Andrä, H. Nowak, Magnetism in medicine (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  15. U. Häfeli, W. Schütt, J. Teller, M. Zborowski, Scientific and clinical applications of magnetic carriers (Springer, Berlin, 2013)

    Google Scholar 

  16. M.S. Carrião, V.R. Aquino, G.T. Landi, E.L. Verde, M.H. Sousa, A.F. Bakuzis, Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: a field dependence study. J. Appl. Phys. 121, 173901 (2017)

    ADS  Google Scholar 

  17. S. Dutz, R. Hergt, Magnetic particle hyperthermia: A promising tumour therapy? Nanotechnology 25, 452001 (2014)

    ADS  Google Scholar 

  18. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    ADS  Google Scholar 

  19. B. Fischer, B. Huke, M. Lücke, R. Hempelmann, Brownian relaxation of magnetic colloids. J. Magn. Magn. Mater. 289, 74–77 (2005)

    ADS  Google Scholar 

  20. R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    ADS  Google Scholar 

  21. E.L. Verde, G.T. Landi, J.D.A. Gomes, M.H. Sousa, A.F. Bakuzis, Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J. Appl. Phys. 111, 123902 (2012)

    ADS  Google Scholar 

  22. S. Dutz, R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperth. 29, 790–800 (2013)

    Google Scholar 

  23. X. Chen, R.D. Klingeler, M. Kath, A.A. El Gendy, K. Cendrowski, R.J. Kalenczuk, E. Borowiak-Palen, Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl. Mater. Interfaces 4, 2303–2309 (2012)

    Google Scholar 

  24. H. Aono, K. Moritani, T. Naohara, T. Maehara, H. Hirazawa, Y. Watanabe, New heat generation material in AC magnetic field for Y3Fe5O12-based powder material synthesized by reverse coprecipitation method. Mater. Lett. 65, 1454–1456 (2011)

    Google Scholar 

  25. A. A. ur Rashid, A. Ahmed, S. Ahmad, S. Shaheen, S. Manzoor, Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications. J. Magn. Magn. Mater. 347, 39–44 (2013)

    ADS  Google Scholar 

  26. M.H. Alnasir, M.S. Awan, S. Manzoor, Magnetic and magnetothermal studies of pure and doped gadolinium silicide nanoparticles for self-controlled hyperthermia applications. J. Magn. Magn. Mater. 449, 137–144 (2018)

    ADS  Google Scholar 

  27. J. Paulus, G. Parida, R. Tucker, J. Park, Corrosion analysis of NiCu and PdCo thermal seed alloys used as interstitial hyperthermia implants. Biomaterials 18, 1609–1614 (1997)

    Google Scholar 

  28. T. Burleigh, D.J.C. Waldeck, Effect of alloying on the resistance of Cu-10% Ni alloys to seawater impingement. Corrosion 55, 800–804 (1999)

    Google Scholar 

  29. I. Bakonyi, J. Tóth, L. Goualou, T. Becsei, E. Tóth-Kádár, W. Schwarzacher, G. Nabiyouni, Giant magnetoresistance of electrodeposited Ni81Cu19/Cu multilayers. J. Electrochem. Soc. 149, C195–C200 (2002)

    Google Scholar 

  30. I. González, J.C. de Jesus, C.U. de Navarro, M. García, Effect of Cu on Ni nanoparticles used for the generation of carbon nanotubes by catalytic cracking of methane. Catal. Today 149, 352–357 (2010)

    Google Scholar 

  31. J. Stergar, I. Ban, L. Gradišnik, U. Maver, Novel drug delivery system based on NiCu nanoparticles for targeting various cells. J. Sol-Gel Sci. Technol. 45, 1–9 (2017)

    Google Scholar 

  32. G. Ferk, J. Stergar, D. Makovec, A. Hamler, Z. Jagličić, M. Drofenik, I. Ban, Synthesis and characterization of Ni–Cu alloy nanoparticles with a tunable Curie temperature. J. Alloy. Compd. 648, 53–58 (2015)

    Google Scholar 

  33. C.G. Robbins, H. Claus, P.A. Beck, Magnetism in Ni–Cu alloys. Phys. Rev. Lett. 22, 1307 (1969)

    ADS  Google Scholar 

  34. R.A. Serway, J.W. Jewett, Physics for scientists and engineers with modern physics (Cengage Learning, Boston, 2018)

    Google Scholar 

  35. R. Hergt, S. Dutz, M. Zeisberger, Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21, 015706 (2009)

    ADS  Google Scholar 

  36. G. Ferk, J. Stergar, M. Drofenik, D. Makovec, A. Hamler, Z. Jagličić, I. Ban, The synthesis and characterization of nickel–copper alloy nanoparticles with a narrow size distribution using sol–gel synthesis. Mater. Lett. 124, 39–42 (2014)

    Google Scholar 

  37. M. Devaraj, R. Saravanan, R. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941 (2016)

    Google Scholar 

  38. Z. Gu, X. Xiang, G. Fan, F. Li, Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction–oxidation route. J. Phys. Chem. C 112, 18459–18466 (2008)

    Google Scholar 

  39. N.M. Lam, T.M. Thi, P.T. Thanh, N.H. Yen, N.H. Dan, Fabrication of Mn–Bi nanoparticles by high energy ball milling. Mater. Trans. 56, 1394–1398 (2015)

    Google Scholar 

  40. M. Gabal, Y. Al Angari, M. Kadi, Structural and magnetic properties of nanocrystalline Ni1−xCuxFe2O4 prepared through oxalates precursors. Polyhedron 30, 1185–1190 (2011)

    Google Scholar 

  41. A. Rostamnejadi, H. Salamati, P. Kameli, H. Ahmadvand, Superparamagnetic behavior of La0.67Sr0.33MnO3 nanoparticles prepared via sol–gel method. J. Magn. Magn. Mater. 321, 3126–3131 (2009)

    ADS  Google Scholar 

  42. E. Rentschler, D. Gatteschi, A. Cornia, A.C. Fabretti, A.-L. Barra, O.I. Shchegolikhina, A.A. Zhdanov, Molecule-based magnets: ferro-and antiferromagnetic interactions in copper (II)–polyorganosiloxanolate clusters. Inorg. Chem. 35, 4427–4431 (1996)

    Google Scholar 

  43. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)

    Google Scholar 

  44. S.K. Sharma, R. Kumar, S. Kumar, M. Knobel, C. Meneses, V.S. Kumar, V. Reddy, M. Singh, C.G. Lee, Role of interparticle interactions on the magnetic behavior of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles. J. Phys. Condens. Matter 20, 235214 (2008)

    ADS  Google Scholar 

  45. H. Bhargava, V. Sudheesh, J. Nehra, V. Sebastian, N. Lakshmi, K. Venugopalan, V. Reddy, A. Gupta, Size-dependent magnetic properties in Cu0.25Co0.25Zn0.5Fe2O4. Bull. Mater. Sci. 37, 953–961 (2014)

    Google Scholar 

  46. S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23 (2011)

    Google Scholar 

  47. Y. Iqbal, H. Bae, I. Rhee, S. Hong, Intensive analysis of core–shell silica-coated iron-oxide nanoparticles for magnetic hyperthermia. J. Nanosci. Nanotechnol. 16, 11862–11867 (2016)

    Google Scholar 

  48. A.A. Kuznetsov, V.G. Leontiev, V.A. Brukvin, G.N. Vorozhtsov, B.Y. Kogan, O.A. Shlyakhtin, A.M. Yunin, O.I. Tsybin, O.A. Kuznetsov, Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J. Magn. Magn. Mater. 311, 197–203 (2007)

    ADS  Google Scholar 

  49. S. Araújo-Barbosa, M.A. Morales, Compounds, Nanoparticles of NixCux alloys for enhanced heating in magnetic hyperthermia. J. Alloy. Compd. 787, 935–943 (2019)

    Google Scholar 

  50. Y.H. Xu, J. Bai, J.P. Wang, M. Materials, High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J. Magn. Magn. Mater. 311, 131–134 (2007)

    ADS  Google Scholar 

  51. L. An, Y. Yu, X. Li, W. Liu, H. Yang, D. Wu, S. Yang, Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications. Mater. Res. Bull. 49, 285–290 (2014)

    Google Scholar 

  52. W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. McConnell, D. Nishimura, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971 (2006)

    ADS  Google Scholar 

  53. H. Yang, X. Li, H. Zhou, Y. Zhuang, H. Hu, H. Wu, S. Yang, Monodisperse water-soluble Fe–Ni nanoparticles for magnetic resonance imaging. J. Alloy. Compd. 509, 1217–1221 (2011)

    Google Scholar 

  54. M.A. Malvindi, V. Brunetti, G. Vecchio, A. Galeone, R. Cingolani, P. Pompa, SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4, 486–495 (2012)

    ADS  Google Scholar 

  55. M. Mumjitha, V. Raj, Fabrication of TiO2–SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance. J. Mech. Behav. Biomed. Mater. 46, 205–221 (2015)

    Google Scholar 

  56. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 11, 313–327 (2015)

    Google Scholar 

  57. H. Sun, X. Chen, D. Chen, M. Dong, X. Fu, Q. Li, X. Liu, Q. Wu, T. Qiu, T. Wan, Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. Int. J. Nanomed. 7, 3295 (2012)

    Google Scholar 

  58. C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)

    Google Scholar 

  59. P. Amrollahi, A. Ataie, A. Nozari, E. Seyedjafari, A. Shafiee, Cytotoxicity evaluation and magnetic characteristics of mechano-thermally synthesized CuNi nanoparticles for hyperthermia. J. Mater. Eng. Perform. 24, 1220–1225 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hisham Alnasir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnasir, M.H., Khan, M.Y., Ali, W.B. et al. Magnetic and hyperthermia properties of Ni1−xCux nanoparticles coated with oleic acid and silica prepared via sol–gel method. Appl. Phys. A 125, 532 (2019). https://doi.org/10.1007/s00339-019-2820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2820-5

Navigation