Applied Physics A

, 125:599 | Cite as

Electrodeposition of Cu thin film assisted by Cu nanoparticles for Cu2ZnSnSe4 solar cell applications

  • Zhaojing Zhang
  • Jiajia Guo
  • Shoushuai Gao
  • Jianping AoEmail author
  • Liyong Yao
  • Jinlian Bi
  • Qing Gao
  • Ming-Jer Jeng
  • Guozhong Sun
  • Zhiqiang Zhou
  • Fangfang Liu
  • Yun Sun
  • Yi ZhangEmail author


Electrodepositing high-quality Cu thin film on Mo substrate is important for fabricating high-efficiency Cu2SnZnSe4 (CZTSe) solar cells via the electrodeposition technique. In this study, a novel route to modify the surface morphology of Cu thin film is reported by utilizing pre-embedded Cu nanoparticles on Mo substrate. The Cu nanoparticles with controlled size and density are synthesized after soaking the pre-fabricated Cu thin films in HCl solution. After employing these Cu nanoparticles to act as nuclei points during the electrodeposition process, compact and flat Cu thin films are successfully electrodeposited in simple salt solution (with no additives) without the precise control of substrate properties and deposition parameters. Due to the electrodeposition of high-quality Cu thin films, CZTSe thin films with compact and uniform grains are prepared. As a result, the carrier density in the CZTSe absorber is significantly improved and a deep level defect induced by the poor morphology metal precursor is inhibited. Finally, a CZTSe solar cell with a power conversion efficiency of 7.36% is fabricated.



This work was supported by the National Natural Science Foundation of China (61674082 and 51572132), the National Key R&D Program of China (2018YFB1500202), the Tianjin Natural Science Foundation of Key Project (16JCZDJC30700), the Yang Fan Innovative & Entrepreneurial Research Team Project (2014YT02N037), and the China Postdoctoral Science Foundation (2018M631730).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

339_2019_2800_MOESM1_ESM.doc (6.6 mb)
Supplementary material 1 (DOC 6764 kb)


  1. 1.
    J. Li, D. Wang, X. Li, Y. Zeng, Y. Zhang, Cation substitution in Earth-abundant kesterite photovoltaic materials. Adv. Sci. 5(4), 1700744 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobé, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez, P. Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy Environ. Sci. 11(3), 582 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Park, J. Huang, J. Yun, F. Liu, Z. Ouyang, H. Sun, C. Yan, K. Sun, K. Kim, J. Seidel, S. Chen, M.A. Green, X. Hao, The role of hydrogen from ALD–Al2O3 in kesterite Cu2ZnSnS4 solar cells: grain surface passivation. Adv. Energy Mater. 8, 1701940 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Taskesen, J. Neerken, J. Schoneberg, D. Pareek, V. Steininger, J. Parisi, L. Gütay, Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Adv. Energy Mater. 8(16), 1703295 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Clauwaert, K. Binnemans, E. Matthijs, J. Fransaer, Electrochemical studies of the electrodeposition of copper-zinc-tin alloys from pyrophosphate electrolytes followed by selenization for CZTSe photovoltaic cells. Electrochim. Acta 188, 344 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Vauche, L. Risch, Y. Sánchez, M. Dimitrievska, M. Pasquinelli, T. Goislard de Monsabert, P.-P. Grand, S. Jaime-Ferrer, E. Saucedo, 8.2% pure selenide kesterite thin-film solar cells from large-area electrodeposited precursors. Prog. Photovolt. 24(1), 38 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Yao, J. Ao, M.-J. Jeng, J. Bi, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, L.-B. Chang, A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure. Sol. Energy Mater. Sol. Cells 159, 318 (2017)CrossRefGoogle Scholar
  8. 8.
    S.M. Lee, S. Ikeda, Y.O.T. Harada, M. Matsumura, Structural regulation of electrochemically deposited copper layers for fabrication of thin film solar cells with a CuInS2 photoabsorber. J. Non Cryst. Solids 358(17), 2424 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    D. Mercier, E. Delbos, H.E. Belghiti, J. Vigneron, M. Bouttemy, A. Etcheberrya, Study of copper electrodeposition mechanism on molybdenum substrate. J. Electrochem. Soc. 160(12), 3103 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Altimari, F. Pagnanelli, Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: model development and validation. Electrochim. Acta 206, 116 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Guo, P.C. Searson, On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim. Acta 55(13), 4086 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Grujicic, B. Pesic, Electrodeposition of copper: the nucleation mechanisms. Electrochim. Acta 47, 2901 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Ren, N. Dai, H.Y. Deng, J.X. Zhang, Growth kinetics and microstructures of Cu nanofilms on Mo substrate by electrodeposition. J. Electrochem. Soc. 162(1), 9 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Wang, L. Cao, G. Yang, X. Qu, Study of direct Cu electrodeposition on ultra-thin Mo for copper interconnect. Microelectron. Eng. 164, 7 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Hreid, A.P. O’Mullane, H.J. Spratt, G. Will, H. Wang, Investigation of the electrochemical growth of a Cu–Zn–Sn film on a molybdenum substrate using a citrate solution. J. Appl. Electrochem. 46(7), 769 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Ibañez, E. Fatás, Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters. Surf. Coat. Technol. 191(1), 7 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Bi, L. Yao, J. Ao, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, Y. Zhang, Pulse electro-deposition of copper on molybdenum for Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cell applications. J. Power Sour. 326, 211 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Schreiber, J. Do, E.M. Roller, T. Zhang, V.J. Schuller, P.C. Nickels, J. Feldmann, T. Liedl, Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9(1), 74 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7(2), 797 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew. Chem. 48(1), 60 (2009)CrossRefGoogle Scholar
  22. 22.
    K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7(10), 3097 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5(1), 5 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    C. Kim, W. Gu, M. Briceno, I.M. Robertson, H. Choi, K. Kim, Copper nanowires with a five-twinned structure grown by chemical vapor deposition. Adv. Mater. 20(10), 1859 (2008)CrossRefGoogle Scholar
  25. 25.
    M.K. Oh, Y.S. Shin, C.L. Lee, R. De, H. Kang, N.E. Yu, B.H. Kim, J.H. Kim, J.K. Yang, Morphological and SERS properties of silver nanorod array films fabricated by oblique thermal evaporation at various substrate temperatures. Nanoscale Res. Lett. 10(1), 962 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Núñez, E. Reguera, F. Corvo, E. González, C. Vazquez, Corrosion of copper in seawater and its aerosols in a tropical island. Corros. Sci. 47(2), 461 (2005)CrossRefGoogle Scholar
  27. 27.
    E.M. Sherif, S.-M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine. J. Electrochem. Soc. 152(10), B428 (2005)CrossRefGoogle Scholar
  28. 28.
    E.-S.M. Sherif, R.M. Erasmus, J.D. Comins, Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor. Corros. Sci. 50(12), 3439 (2008)CrossRefGoogle Scholar
  29. 29.
    D.-Q. Zhang, L.-X. Gao, G.-D. Zhou, Inhibition of copper corrosion by bis-(1-benzotriazolymethylene)-(2,5-thiadiazoly)-disulfide in chloride media. Appl. Surf. Sci. 225(1–4), 287 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Xuetao, W. Yu, S. Dongbai, Y. Hongying, Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits. Surf. Coat. Technol. 202(9), 1895 (2008)CrossRefGoogle Scholar
  31. 31.
    E. Budevski, G. Staikov, W.J. Lorenz, Electrocrystallization nucleation and growth phenomena. Electrochim. Acta 45, 2559 (2000)CrossRefGoogle Scholar
  32. 32.
    Z. Zhang, L. Yao, Y. Zhang, J. Ao, J. Bi, S. Gao, Q. Gao, M.J. Jeng, G. Sun, Z. Zhou, Q. He, Y. Sun, Modified back contact interface of CZTSe thin film solar cells: elimination of double layer distribution in absorber layer. Adv. Sci. 5(2), 1700645 (2018)CrossRefGoogle Scholar
  33. 33.
    S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis. Prog. Photovolt. 12(23), 155 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Li, H. Wang, M. Luo, J. Tang, C. Chen, W. Liu, F. Liu, Y. Sun, J. Han, Y. Zhang, 10% Efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width. Sol. Energy Mater. Sol. Cells 149, 242 (2016)CrossRefGoogle Scholar
  35. 35.
    Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Cu2ZnSnSe4 Thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5(7), 1401372 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    T. Eisenbarth, T. Unold, R. Caballero, C.A. Kaufmann, H.-W. Schock, Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells. J. Appl. Phys. 107(3), 034509 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S. Chen, J.-H. Yang, X.G. Gong, A. Walsh, S.-H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81(24), 245204 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of TianjinNankai UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Institute of Power SourceTianjinPeople’s Republic of China
  3. 3.Department of Electronic EngineeringChang Gung UniversityTaoyüanTaiwan
  4. 4.Department of Otolaryngology, Head and Neck SurgeryChang Gung Memorial HospitalLinkouTaiwan
  5. 5.Renewable Energy Conversion and Storage CenterNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations