Skip to main content
Log in

Citrate-assisted galvanic replacement for fabrication of homogeneous Ag nanosheets as high-performance SERS substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effective and simple method for the fabrication of Ag nanosheets (NSs) was developed via citrate-assisted galvanic replacement at room temperature. The effects of reaction time, concentration of AgNO3 and citrate on the morphology and surface-enhanced Raman scattering (SERS) performance of Ag NSs were investigated systematically. The results indicated that citrate played a vital role on preparing uniform Ag NSs, because it could retard the reaction rate and control the direction of Ag growth. Furthermore, citrate was bound weakly toward Ag NSs and easily replaced by probe molecules, which opened a new avenue for the fabrication of clean SERS substrates. In addition, the Ag NSs substrate exhibited a high sensitivity in SERS detection and the analytical enhancement factor was up to 7.93 × 105 with the minimum detected concentration of R6G as low as 10−8 M. Moreover, the color mapping was relatively uniform and the relative standard deviation was below 15%, revealing that the SERS performance of Ag NSs substrate was highly reproducible. Consequently, we believe this citrate-directed galvanic replacement could regulate the morphology and produce clean and highly active SERS substrates, which would be potentially useful for its practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Ding, L. Hang, L. Ma, RSC Adv. 8, 1753–1757 (2018)

    Google Scholar 

  2. J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, H. Hahn, Nano Lett. 10, 5006–5013 (2010)

    ADS  Google Scholar 

  3. N. Gandra, C. Portz, S. Singamaneni, Adv. Mater. 26, 424–429 (2014)

    Google Scholar 

  4. J. Yan, X. Han, J. He, L. Kang, B. Zhang, Y. Du, H. Zhao, C. Dong, H.-L. Wang, P. Xu, A.C.S. Appl, Mater. Interfaces 4, 2752–2756 (2012)

    Google Scholar 

  5. M. Yang, K.D. Gilroy, Y. Xia, Part. Part. Syst. Char. 34, 1600279 (2017)

    Google Scholar 

  6. K. Liu, S. Tadepalli, L. Tian, S. Singamaneni, Chem. Mater. 27, 5261–5270 (2015)

    Google Scholar 

  7. J. Wu, Z. Zhang, B. Liu, Y. Fang, L. Wang, B. Dong, Solar RRL 2, 1800039 (2018)

    Google Scholar 

  8. X. Li, H.K. Lee, I.Y. Phang, C.K. Lee, X.Y. Ling, Anal. Chem. 86, 10437–10444 (2014)

    Google Scholar 

  9. S. Li, P. Xu, Z. Ren, B. Zhang, Y. Du, X. Han, N.H. Mack, H.-L. Wang, A.C.S. Appl, Mater. Interfaces 5, 49–54 (2013)

    Google Scholar 

  10. M. Wang, G. Shi, Y. Zhu, Y. Wang, W. Ma, Nanomaterials 8, 289 (2018)

    Google Scholar 

  11. J. He, X. Han, J. Yan, L. Kang, B. Zhang, Y. Du, C. Dong, H.-L. Wang, P. Xu, CrystEngComm 14, 4952 (2012)

    Google Scholar 

  12. Y. Zheng, X. Zhong, Z. Li, Y. Xia, Part. Part. Syst. Char. 31, 266–273 (2014)

    Google Scholar 

  13. A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, L.M. Liz-Marzán, J. Am. Chem. Soc. 139, 107–110 (2017)

    Google Scholar 

  14. H. Zhang, F. Zhou, M. Liu, D. Liu, D. Men, W. Cai, G. Duan, Y. Li, Adv. Mater. Interfaces 2, 1500031 (2015)

    Google Scholar 

  15. G. Shi, M. Wang, Y. Zhu, Y. Wang, H. Xu, Appl. Surf. Sci. 459, 802–811 (2018)

    ADS  Google Scholar 

  16. J. Wang, G. Duan, G. Liu, Y. Li, L. Xu, W. Cai, J. Mater. Chem. C 3, 5709–5714 (2015)

    Google Scholar 

  17. J. Lee, Q. Zhang, S. Park, A. Choe, Z. Fan, H. Ko, H. Ko, A.C.S. Appl, Mater. Interfaces 8, 634–642 (2015)

    Google Scholar 

  18. S. Yang, P.J. Hricko, P.-H. Huang, S. Li, Y. Zhao, Y. Xie, F. Guo, L. Wang, T.J. Huang, J. Mater. Chem. C 2, 542–547 (2014)

    Google Scholar 

  19. B.L. Au, X. Lu, Y. Xia, Adv. Mater. 20, 2517–2522 (2008)

    Google Scholar 

  20. S. Mabbott, A. Eckmann, C. Casiraghi, R. Goodacre, Analyst 138, 118–122 (2013)

    ADS  Google Scholar 

  21. L. Polavarapu, D. Zanaga, T. Altantzis, S. Rodal-Cedeira, I. Pastoriza-Santos, J. Perez-Juste, S. Bals, L.M. Liz-Marzan, J. Am. Chem. Soc. 138, 11453–11456 (2016)

    Google Scholar 

  22. Y. Yang, J. Liu, Z.-W. Fu, D. Qin, J. Am. Chem. Soc. 136, 8153–8156 (2014)

    Google Scholar 

  23. A. Nahla, J.M. Abu Hatab, M.J. Oran, ACS Nano 2, 377–385 (2008)

    Google Scholar 

  24. S.M. Wells, S.D. Retterer, J.M. Oran, M.J. Sepaniak, ACS Nano 3, 3845–3853 (2009)

    Google Scholar 

  25. H. Mao, W. Wu, D. She, G. Sun, P. Lv, J. Xu, Small 10, 127–134 (2014)

    Google Scholar 

  26. G. Yang, J. Nanda, B. Wang, G. Chen, J. Daniel, T. Hallinan, ACS Appl. Mater. Interfaces 9, 13457–13470 (2017)

    Google Scholar 

  27. X. Lin, W.-L.-J. Hasi, S.-Q.-G.-W. Han, X.-T. Lou, D.-Y. Lin, Z.-W. Lu, Phys. Chem. Chem. Phys. 17, 31324–31331 (2015)

    Google Scholar 

  28. A. Garcia-Leis, A. Torreggiani, J.V. Garcia-Ramos, S. Sanchez-Cortes, Nanoscale 7, 13629–13637 (2015)

    ADS  Google Scholar 

  29. A. Jaiswal, L. Tian, S. Tadepalli, K.-K. Liu, M. Fei, M.E. Farrell, P.M. Pellegrino, S. Singamaneni, Small 10, 4287–4292 (2014)

    Google Scholar 

  30. L. Tian, N. Gandra, S. Singamaneni, ACS Nano 7, 4252–4260 (2013)

    Google Scholar 

  31. S. Shin, J. Lee, S. Lee, H. Kim, J. Seo, D. Kim, J. Hong, S. Lee, T. Lee, Small 13, 1602865 (2017)

    Google Scholar 

  32. J. Wu, J. Fang, M. Cheng, X. Gong, Appl. Phys. A 122, 844 (2016)

    ADS  Google Scholar 

  33. P.X. Chen, S.B. Shang, L.T. Hu, X.Y. Liu, H.W. Qiu, C.H. Li, Y.Y. Huo, S.Z. Jiang, C. Yang, Chem. Phys. Lett. 660, 169–175 (2016)

    ADS  Google Scholar 

  34. L. Hu, Y.J. Liu, Y. Han, P. Chen, C. Zhang, C. Li, Z. Lu, D. Luo, S. Jiang, J. Mater. Chem. C 5, 3908–3915 (2017)

    Google Scholar 

  35. T.-L. Guo, J.-G. Li, X. Sun, Y. Sakka, Mater. Sci. Eng., C 61, 97–104 (2016)

    Google Scholar 

  36. J. Wu, J. Fang, M. Cheng, X. Gong, Appl. Phys. A 122, 1065 (2016)

    ADS  Google Scholar 

  37. B. Zhang, P. Xu, X. Xie, H. Wei, Z. Li, N.H. Mack, X. Han, H. Xu, H.-L. Wang, J. Mater. Chem. C 21, 2495–2501 (2011)

    ADS  Google Scholar 

  38. S. Zhou, D. Huo, S. Goines, Z. Tung-Han Yang, M. Lyu, K.D. Zhao, Y. Gilroy, Z.D. Wu, M. Hood, Y. Xie, J. Am. Chem. Soc. 140, 11898–11901 (2018)

    Google Scholar 

  39. L. Tian, M. Su, F. Yu, Y. Xu, X. Li, L. Li, H. Liu, W. Tan, Nat. Commun. 9, 3642 (2018)

    ADS  Google Scholar 

  40. R. Fu, G. Liu, C. Jia, X. Li, X. Tang, G. Duan, Y. Li, W. Cai, Chem. Commun. 51, 6609–6612 (2015)

    Google Scholar 

  41. S. Mabbott, Y. Xu, R. Goodacre, Anal. Methods 9, 4783–4789 (2017)

    Google Scholar 

  42. M. Hajfathalian, K.D. Gilroy, R.A. Hughes, S. Neretina, Small 12, 3444–3452 (2016)

    Google Scholar 

  43. L. Kang, P. Xu, D. Chen, B. Zhang, Y. Du, X. Han, Q. Li, H.-L. Wang, J. Phys. Chem. C 117, 10007–10012 (2013)

    Google Scholar 

  44. Y. Wang, M. Wang, L. Shen, X. Sun, G. Shi, W. Ma, X. Yan, Appl. Surf. Sci. 436, 391–397 (2018)

    ADS  Google Scholar 

  45. S. Lin, X. Lin, Y. Liu, H. Zhao, W. Hasi, L. Wang, Anal. Methods 10, 4201–4208 (2018)

    Google Scholar 

  46. F. Diao, X. Xiao, B. Luo, H. Sun, F. Ding, L. Ci, P. Si, Appl. Surf. Sci. 427, 1271–1279 (2018)

    ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 61805033 and 21501021) and the Open Fund of State Key Laboratory of Molecular Reaction Dynamics, DICP, CAS (SKLMRD-K201812).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Lin, Li Wang or Shulin Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lin, X., Liu, B. et al. Citrate-assisted galvanic replacement for fabrication of homogeneous Ag nanosheets as high-performance SERS substrate. Appl. Phys. A 125, 492 (2019). https://doi.org/10.1007/s00339-019-2786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2786-3

Navigation