Applied Physics A

, 125:418 | Cite as

Structure, dielectric, and optical properties of PbTi(1−x)(V0.50Fe0.50)xO3 perovskite ceramics

  • Arun Kumar Yadav
  • Anita Verma
  • Sunil Kumar
  • Sk. Riyajuddin
  • Kaushik Ghosh
  • Sajal Biring
  • Somaditya SenEmail author


Polycrystalline PbTi(1−x)(Fe0.50V0.50)xO3 (0 ≤ x ≤ 0.12) ceramics have been prepared using a modified sol–gel route via conventional sintering method. Rietveld refinement of all samples XRD data are carried out with tetragonal P4mm space group. Structural analysis is revealed to decrease the tetragonality (c/a) from 1.064 (for x = 0) to 1.039 (for x = 0.12) with increasing composition. An electronic structural study perceived that the hybridizations between Pb (6s)–O (2p)–Ti (3d) orbitals are weakened with increasing substitution. Average grain size is influenced by the substituent effectively. The phase-transition temperature is found to decrease with increasing composition. The impedance study confirms that the conductivity of the samples is increased as a function of substitution and temperature. Absorption spectra have revealed the decrease of bandgap with increasing substitution. Hence, transition V and Fe ions are played an important role in modifying the relative density, conductivity, and bandgap of the PbTiO3 ceramic materials.



Mr. A. K. Yadav acknowledges the financial support from the University Grants Commission (NFO-2015-17-OBC-UTT-28455). The authors express grateful thanks to the Indian Institute of Technology Indore, for funding the research and using Sophisticated Instrument Centre (SIC). Sunil Kumar acknowledges SERB for Early Career Research award (ECR/2017/0561). Sajal Biring sincerely thanks financial support from the Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003 and 106-2221-E-131-027). We are thankful to Dr. Pankaj Sagdeo for UV–Vis data.


  1. 1.
    A.S. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4(1), 3–26 (2000)CrossRefGoogle Scholar
  2. 2.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (2004)CrossRefGoogle Scholar
  3. 3.
    G. Shirane, S. Hoshino, On the phase transition in lead titanate. J. Phys. Soc. Jpn. 6(4), 265–270 (1951)ADSCrossRefGoogle Scholar
  4. 4.
    E.C. Subbarao, Studies on lead titanate ceramics containing niobium or tantalum. J. Am. Ceram. Soc. 43(3), 119–122 (1960)CrossRefGoogle Scholar
  5. 5.
    A.K. Yadav, A. Verma, B. Singh, D. Kumar, S. Kumar, V. Srihari, H.K. Poshwal, P. Kumar, S.-W. Liu, S. Biring, S. Sen, (Pb1−xBix)(Ti1−xMnx)O3: competing mechanism of tetragonal-cubic phase on A/B site modifications. J. Alloys Compd. 765, 278–286 (2018)CrossRefGoogle Scholar
  6. 6.
    A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1−xFex)O3. J. Alloys Compd. 701(Supplement C), 619–625 (2017)CrossRefGoogle Scholar
  7. 7.
    T.Y. Tien, W.G. Carlson, Effect of additives on properties of lead titanate. J. Am. Ceram. Soc. 45(12), 567–571 (1962)CrossRefGoogle Scholar
  8. 8.
    S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    N. Zhang, H. Yokota, A.M. Glazer, Z. Ren, D.A. Keen, D.S. Keeble, P.A. Thomas, Z.G. Ye, The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 5, 5231 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Chandra, D. Pandey, P.S.R. Krishna, M. Ramanadham, Evidence for a new non-ferroelectric phase transition in (Pb1−xCax)TiO3 ceramics for 0.60 ≤ x ≤ 0.90. Ferroelectrics 324(1), 37–41 (2005)CrossRefGoogle Scholar
  11. 11.
    C.F.V. Raigoza, D. Garcia, J.A. Eiras, R.H.G.A. Kiminami, Optimization of parameters in the synthesis of 0.90Pb(Zn1/3Nb2/3)O3–0.10PbTiO3 (PZN-10PT) powders obtained by the mixed oxides method. Bol. Soc. Esp. Ceram. Vidrio 56(1), 13–18 (2017)CrossRefGoogle Scholar
  12. 12.
    E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Piezoelectric properties of <001> textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78(17), 2551–2553 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    H. Uršič, Zarnik, M. Kosec, Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) material for actuator applications. Smart Mater. Res. 2011, 6 (2011)Google Scholar
  14. 14.
    X. Long, Z.-G. Ye, New dielectric and ferroelectric solid solution of (1 − x)Ba(Mg1/3Nb2/3)O3−xPbTiO3 with morphotropic phase boundary. Chem. Mater. 19(6), 1285–1289 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Long, Z. Ye, Relaxor behavior in Ba(Zn1/3Nb2/3)O3–PbTiO3 new solid solution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2595–2598 (2007)CrossRefGoogle Scholar
  16. 16.
    C. Correas, T. Hungría, A. Castro, Mechanosynthesis of the whole xBiFeO3−(1−x)PbTiO3 multiferroic system: structural characterization and study of phase transitions. J. Mater. Chem. 21(9), 3125–3132 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Li, Z. Wang, Y. Liu, C. He, X. Long, A new ternary ferroelectric crystal of Pb(Y1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3. CrystEngComm 16(32), 7552–7557 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Hu, J. Chen, J. Deng, X. Xing, Thermal expansion, ferroelectric and magnetic properties in (1 − x)PbTiO3−xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc. 132(6), 1925–1928 (2010)CrossRefGoogle Scholar
  19. 19.
    M.L. Calzada, L.D. Olmo, Piezoelectric behaviour of pure PbTiO3 ceramics. Ferroelectrics 123(1), 233–241 (1991)CrossRefGoogle Scholar
  20. 20.
    G. Sághi-Szabó, R.E. Cohen, H. Krakauer, First-principles study of piezoelectricity in PbTiO3. Phys. Rev. Lett. 80(19), 4321–4324 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Xu, 1—Introduction: Characteristics of Ferroelectrics, in Ferroelectric Materials and Their Applications, ed. by Y. Xu (Elsevier, Amsterdam, 1991), pp. 1–36Google Scholar
  22. 22.
    Z. Yang, X. Chao, R. Zhang, Y. Chang, Y. Chen, Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers. Mater. Sci. Eng. B 138(3), 277–283 (2007)CrossRefGoogle Scholar
  23. 23.
    A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1−x)LaxTi(1−x)AlxO3 ceramics. J. Appl. Phys. 123(12), 124102 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, G. Han, Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett. 91(6), 063106 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J. Carvajal, FULLPROF: a program for rietveld refinement and pattern matching analysis, abstracts of the satellite meeting on powder diffraction of the XV Congress of the IUCr, (1990)Google Scholar
  26. 26.
    G. Shirane, R. Pepinsky, B.C. Frazer, X-ray and neutron diffraction study of ferroelectric PbTiO3. Acta Cryst. 9(2), 131–140 (1956)CrossRefGoogle Scholar
  27. 27.
    R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    G. Burns, B.A. Scott, Lattice modes in ferroelectric perovskites: PbTiO3. Phys. Rev. B 7(7), 3088–3101 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    G. Burns, B.A. Scott, Raman studies of underdamped soft modes in PbTiO3. Phys. Rev. Lett. 25(3), 167–170 (1970)ADSCrossRefGoogle Scholar
  31. 31.
    L.A. Bursill, B. Jiang, J.L. Peng, T.L. Ren, W.L. Zhong, P.L. Zhang, Hrtem analysis of nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature. Ferroelectrics 191(1), 281–286 (1997)CrossRefGoogle Scholar
  32. 32.
    S. Sen, Y. Zou, S.K. Ray, D.P. Robertson, P. Guptasarma, M. Gajdardziska-Josifovska, Structural complexities of PbTi0.5Fe0.5O3 nanocrystals revealed by HRTEM. Microsc. Microanal. 16(S2), 1720–1721 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 − x)Na0.5Bi0.5TiO3−xAgTaO3 ceramics. J. Appl. Phys. 125(5), 054101 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    D. Pang, Z. Yi, Ferroelectric, piezoelectric properties and thermal expansion of new Bi(Ni3/4W1/4)O3–PbTiO3 solid solutions. RSC Adv. 7(32), 19448–19456 (2017)CrossRefGoogle Scholar
  36. 36.
    A.K. Yadav, A.S. Kumar, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics. J. Mater. Sci. Mater. Electron. 28(14), 10730–10738 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Tawfik, O.M. Hemeda, D.M. Hemeda, R. Shady, M. Barakat, Structural morphological and dielectric properties of Pb1−xNixTiO3 doped with Ni. Open J. Appl. Sci. 06(11), 18 (2016)Google Scholar
  38. 38.
    D. Wang, M. Cao, S. Zhang, Investigation of ternary system Pb(Sn, Ti)O3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Eur. Ceram. Soc. 32(2), 441–448 (2012)CrossRefGoogle Scholar
  39. 39.
    J.R. Macdonald, Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 223(1), 25–50 (1987)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J.R. Macdonald, Impedance spectroscopy: old problems and new developments. Electrochim. Acta 35(10), 1483–1492 (1990)CrossRefGoogle Scholar
  41. 41.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    A. Shukla, R.N.P. Choudhary, Impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Curr. Appl. Phys. 11(3), 414–422 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    S. Kumar, K.B.R. Varma, Dielectric relaxation in bismuth layer-structured BaBi4Ti4O15 ferroelectric ceramics. Curr. Appl. Phys. 11(2), 203–210 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R.M. Hill, L.A. Dissado, Debye and non-Debye relaxation. J. Phys. C Solid State Phys. 18(19), 3829 (1985)ADSCrossRefGoogle Scholar
  45. 45.
    A.K. Yadav, S.A. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and ferroelectric properties of perovskite Pb(1−x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv. 7(63), 39434–39442 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Kumar, A.K. Yadav, S. Sen, Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase. J. Mater. Sci. Mater. Electron. 28(16), 12332–12341 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Arrhenius, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Zeitschrift für Physikalische Chemie, 1889, pp 96Google Scholar
  48. 48.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15(2), 627–637 (1966)ADSCrossRefGoogle Scholar
  49. 49.
    T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceram. Int. 42(5), 6033–6038 (2016)CrossRefGoogle Scholar
  50. 50.
    W. Zhou, H. Deng, P. Yang, J. Chu, Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x ferroelectrics. Appl. Phys. Lett. 105(11), 111904 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    A.K. Anita, N. Yadav, S. Khatun, C.-M. Kumar, S. Tseng, S. Biring, Sen, size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J. Mater. Sci. Mater. Electron. 28(24), 19017–19024 (2017)CrossRefGoogle Scholar
  52. 52.
    G.Y. Gou, J.W. Bennett, H. Takenaka, A.M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−xNix)O3−x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B 83(20), 205115 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Liu, W. Wang, X. Xu, J.P.M. Veder, Z. Shao, Recent advances in anion-doped metal oxides for catalytic applications. J. Mater. Chem. A 7(13), 7280–7300 (2019)CrossRefGoogle Scholar
  54. 54.
    W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019)CrossRefGoogle Scholar
  55. 55.
    Y.-I. Kim, M.P. Woodward, Band gap modulation of Tantalum(V) perovskite semiconductors by anion control, Catalysts 9(2) (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of PhysicsIndian Institute of Technology IndoreIndoreIndia
  3. 3.Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan
  4. 4.Institute of Nano Science and TechnologyMohaliIndia

Personalised recommendations