Advertisement

Applied Physics A

, 125:403 | Cite as

Solvatochromic analysis and DFT computational study of N-(hexyl)-N-(5-(3-hydroxynaphthyl-2-yl)-1,3,4-oxadiazol-2-yl)amine

  • Murat GençEmail author
Article
  • 11 Downloads

Abstract

A detailed analysis of the molecular orbitals contained in the electronic transitions in the UV-spectra and a detailed synthesis and conformational study of N-(hexyl)-N-(5-(3-hydroxynaphthyl-2-yl)-1,3,4-oxadiazol-2-yl)amine (NOH) were conducted using the method of TD-DFT (B3LYP/6-311 + G (d,p)). All the theoretical results were found to be in line with the experimental values. For the most stable conformer, the optimized structure parameters (bond lengths, bond angles), vibrational modes and their assignments and were calculated using DFT/B3LYP functional and 6-311 +G(d,p) basis set. The basic vibrational modes were determined by PED, the experimental and computed values were found to support each other. The chemical shifts of 1H-NMR and 13C-NMR were specified using the method of GIAO and compared with the experimental chemical shifts. The frontier orbital energy gap, global chemical reactivity restrictive such as the chemical potential, global hardness, electronegativity, index of electrophilicity, global softness of the molecule were also studied. The Natural Bond Orbital (NBO) analysis was performed to find out the stability and strength of the molecule. Based upon the experimental solvent influence and the theoretical examinations, the long wavelength bands were attributed to π → π* transitions induced by HOMO–LUMO intra-molecular charge transfer from the naphthyl ring to the 1,3,4-oxadiazole. Beside these, electrophilic index, EHOMO (− 5.88 eV), ELUMO (1.89 eV) and energy gap (3.99 eV) were computed to investigate the bio activity, reactivity and stability of the NOH. Kamlet–Taft and Catalan solvatochromism of synthesized 1,3,4-oxadiazole derivative were discussed. The Kamlet–Taft and Catalán solvent parameter sets were used to determine the effect of specific and non-specific solvent–solute interactions on the shifts of UV–Vis absorption maxima.

Notes

Acknowledgements

We are indebted to the Adıyaman University Research Foundation (FEFBAP/2014-0011) for providing the financial support to this study.

Supplementary material

339_2019_2692_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1450 kb)

References

  1. 1.
    I.E. Mikhailov, L.D. Popov, V.V. Tkachev, S.M. Aldoshin, G.A. Dushenko, Y.V. Revinskii, V.I. Minkin, J. Mol. Struct. 1157, 374–380 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    M. Akhter, A. Husain, B. Azad, M. Ajmal, Eur. J. Med. Chem. 44, 2372–2378 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Bostrom, A. Hogner, A. Llina, E. Wellner, A.T. Plowright, J. Med. Chem. 55, 1817–1830 (2012)CrossRefGoogle Scholar
  4. 4.
    WCh. Lee, O.Y. Kim, J.Y. Lee, Ind. Eng. Chem. 20, 1198–1208 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Shirota, H. Kageyama, Chem. Rev. 107, 953–1010 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Yang, J. Mu, X. Chen, L. Feng, J. Jia, J. Wang, Dyes Pigment 91, 446–453 (2011)CrossRefGoogle Scholar
  7. 7.
    H.S. Lv, B.X. Zhao, J.K. Li, Y. Xia, S. Lian, W.Y. Liu, L. Zh, Dyes. Pigments. 86, 25–31 (2010)CrossRefGoogle Scholar
  8. 8.
    I.E. Mikhailov, YuM Artyushkina, G.A. Dushenko, O.I. Mikhailova, Y.V. Revinskii, O.N. Burov, V.I. Minkin, Russ. J. Org. Chem. 52, 1700–1703 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.M. Jin, C.H. Wang, L.S. Xue, T.Y. Li, S. Zhang, X. Liu, X. Liang, Y.-X. Zheng, J.L. Zuo, Organomet. Chem. 765, 39–45 (2014)CrossRefGoogle Scholar
  10. 10.
    S.L. Gaonkar, K.M.L. Rai, B. Prabhuswamy, Eur. J. Med. Chem. 41, 841–846 (2006)CrossRefGoogle Scholar
  11. 11.
    T.M. Tan, Y. Chen, K.H. Kong, J. Bai, Y. Li, S.G. Lim, T.H. Ang, Y. Lam, Antivir. Res. 71, 7–14 (2006)CrossRefGoogle Scholar
  12. 12.
    A.S. Aboraia, H.M. Abdel-Rahman, N.M. Mahfouz, M.A. Gendy, Bioorg. Med. Chem. Lett. 14, 1236 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Liu, H. Zhang, X. Yang, Z. Liu, Bioorg. Med. Chem. Lett. 16, 2278–2282 (2006)CrossRefGoogle Scholar
  14. 14.
    M.T. Khan, M.I. Choudhary, K.M. Khan, M. Rani, A.U. Rahman, Bioorg. Med. Chem. 13, 3385–3395 (2005)CrossRefGoogle Scholar
  15. 15.
    D. Kumar, S. Sundaree, E.O. Johnson, K. Shah, Bioorg. Med. Chem. Lett. 19, 4492–4494 (2009)CrossRefGoogle Scholar
  16. 16.
    R.N. Warrener, Eur. J. Org. Chem. 65, 3363–3380 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Guan, Z.Q. Bian, Y.F. Zhou, F.Y. Li, Z.J. Li, C.H. Huang, Chem. Commun. 21, 2708–2709 (2003)CrossRefGoogle Scholar
  18. 18.
    C.R.W. Guimaraes, D.L. Boger, W.L. Jorgensen, J. Am. Chem. Soc. 127, 17377–17384 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Al-Talib, H. Tastoush, N. Odeh, Synth. Commun. 20, 1811–1817 (1990)CrossRefGoogle Scholar
  20. 20.
    F.A. Al-Zahrani, M.N. Arshad, A.M. Asiri, T. Mahmood, M.A. Gilani, R.M. Elshishtawy, Chem. Cent. J. 10, 13 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Noreen, N. Rasool, Y. Gull, M. Zubair, T. Mahmood, K. Ayub, F.H. Nasim, A. Yaqoob, M. Zia-Ul-Haq, V. de Feo, Molecules 20, 19914–19928 (2015)CrossRefGoogle Scholar
  22. 22.
    M.N. Arshad, A.M. Asiri, K.A. Alamry, T. Mahmood, M.A. Gilani, K. Ayub, A.S. Birinji, Spectrochim. Acta. Part. A Mol. Biomol. Spectroscm. 142, 364–374 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    H.N. Dogan, S. Rollas, H. Erdeniz, Farmaco 53, 462–467 (1998)CrossRefGoogle Scholar
  24. 24.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT (2009)Google Scholar
  25. 25.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    T.K.R. Dennington, J. Millam, GaussView, version 5 (Semichem Inc., Shawnee Mission KS, 2009)Google Scholar
  28. 28.
    K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251–8260 (1990)CrossRefGoogle Scholar
  29. 29.
    N. Sundaraganesan, S. Ilakiamani, H. Saleem, P.M. Wojciechowski, D. Michalska, Spectrochim. Acta. 61, 2995–3001 (2005)CrossRefGoogle Scholar
  30. 30.
    H.M. Jamroz,Vibrational energy distribution analysis: VEDA 4 program, Warsaw (2004)Google Scholar
  31. 31.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar
  32. 32.
    D. Avcı, Y. Atalay, Int. J. Quantum. Chem. 109, 328–341 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    L.J. Bellamy, The infrared spectrum of complex molecules (Chapman and Hall, London, 1975)CrossRefGoogle Scholar
  34. 34.
    N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1965)Google Scholar
  35. 35.
    J. Coates, R.A. Meyers, Encyclopedia of analytical chemistry: interpretation of infrared spectra: a practical approach (Wiley, Chichester, 2000)Google Scholar
  36. 36.
    S. Kundoo, A.N. Banerjee, P. Saha, K.K. Chattopadhyay, Mater. Lett. 57, 2193–2197 (2003)CrossRefGoogle Scholar
  37. 37.
    Y.S. Mary, N.R. El-Brollosy, A.A. El-Emam, O.A. Al-Deeb, P.J. Jojo, C.Y. Panicker, C. van Alsenoy, Spectrochim. Acta A 133, 449 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    D. Lin-vien, N.B. Colthup, W.G. Fately, J.G. Grasselli, The handbook of infrared and raman characteristic frequencies of organic molecules (Academic Press Limited, London, 1991)Google Scholar
  39. 39.
    M.N. Ahmed, K.A. Yasin, S. Hameed, K. Ayub, H. Ihsan-ul, M.N. Tahir, T. Mahmood, J. Mol. Struct 1129, 50–59 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    G. Socrates, Infrared characteristic group frequencies (Wiley, New York, 1981)Google Scholar
  41. 41.
    N.P.G. Roeges, A Guide to the complete interpretation of ir spectra of organic compounds (Wiley, New York, 1994)Google Scholar
  42. 42.
    S.A. El-Azab, Y.S. Mary, A.M. Abdel-Aziz, B.P. Miniyar, S. Armakovi, J.S. Armakovi, J. Mol. Struct. 1156, 657–674 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    F.A.M. Al-Omary, Y.S. Mary, C.Y. Panicker, A.A. El-Emam, I.A. Al-Swaidan, A.A. Al-Saadi, C. Van Alsenoy, J. Mol. Struct. 1096, 1–14 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    E.S. Al-Abdullah, S.H.R. Sebastian, R.I. Al-Wabli, A.A. El-Emam, C.Y. Panicker, C. van Alsenoy, Spectrochim. Acta 133, 605–618 (2014)CrossRefGoogle Scholar
  45. 45.
    N.G. Haress, F. Al-Omary, A.A. El-emam, Y.S. Mary, C.Y. Panicker, A.A. Al-Saadi, J.A. War, C. van Alsenoy, Spectrochim. Acta 135, 973–983 (2015)CrossRefGoogle Scholar
  46. 46.
    M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48, 2877–2887 (1983)CrossRefGoogle Scholar
  47. 47.
    J. Catalan, H. Hopf, Eur. J. Org. Chem. 22, 4694–4702 (2004)CrossRefGoogle Scholar
  48. 48.
    P.K. Chattaraj, S. Giri, J. Phys. Chem. 111, 11116–11121 (2007)CrossRefGoogle Scholar
  49. 49.
    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793–1873 (2003)CrossRefGoogle Scholar
  50. 50.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  51. 51.
    R.G. Parr, L. Von Szentpaly, S.B. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  52. 52.
    R.G. Pearson, J. Org. Chem. 54, 1423–1430 (1989)CrossRefGoogle Scholar
  53. 53.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899–926 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentAdiyaman University, Science and Arts FacultyAdiyamanTurkey

Personalised recommendations