Applied Physics A

, 125:337 | Cite as

Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates

  • Pham Nam Thang
  • Le Xuan Hung
  • Dao Nguyen Thuan
  • Nguyen Thu Loan
  • Guillaume Binard
  • Willy Daney de Marcillac
  • Agnès Maître
  • Nguyen Quang Liem
  • Laurent Coolen
  • Pham Thu NgaEmail author


In this article, we perform surface-enhanced Raman scattering (SERS) with a periodically corrugated metallic substrate obtained by evaporating an Ag film onto an artificial opal crystal, which is a self-assembled lattice of SiO2 600-nm spheres. These metallic-film-on-nanosphere (MFON) surfaces are characterized by scanning electron microscopy for different Ag film thicknesses ranging from 44 to 620 nm. Raman scattering spectra are measured for two different types of quantum dots, CdTeSe quantum dots (QDs) and graphene quantum dots (GQDs). We are able to show that enhancement of the Raman spectra can be obtained for all MFON substrates and for both types of QDs. For both CdTeSe and graphene quantum dots, the strongest SERS effect was observed in samples with 135 nm Ag thickness. This is attributed to the formation of hot spots in the nanogap dips of the Ag film.



This research is possible thanks to PICS cooperation project (6456) between CNRS, INSP-UPMC-VAST and funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 103.03-2018.03. The authors thank the National Key Laboratory for Electronic Materials and Devices-IMS and Duy Tan University for the use of facilities.


  1. 1.
    L.X. Hung, P.D. Bassène, P.N. Thang, N.T. Loan, W. Daney de Marcillac, A.R. Dhawan, F. Feng, J.U. Esparza-Villa, N.T. Thuc Hien, N.Q. Liem, L. Coolen, P.T. Nga, Near-infrared emitting CdTeSe alloyed quantum dots: Raman scattering, photoluminescence and single-emitter optical properties. RSC Adv. 7, 47966–47974 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Li, Y. Chen, Q. Lu, J. Ji, Y. Shen, M. Xu, R. Fei, G. Yang, K. Zhang, J.-R. Zhang, J.-J. Zhu, Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Sci. Rep. 3, 01529 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003)CrossRefGoogle Scholar
  4. 4.
    R. Wang, Y. Shang, P. Kanjanaboos, W. Zhou, Z. Ning, E.H. Sargent, Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 9, 1130–1143 (2016)CrossRefGoogle Scholar
  5. 5.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Xue, X. Chen, S. Liu, F. Zheng, L. He, L. Li, J.J. Zhu, Highly enhanced fluorescence of CdSeTe quantum dots coated with polyanilines via in-situ polymerization and cell imaging application. ACS Appl. Mater. Interfaces. 7, 19126–19133 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Zou, M. Liu, D. Zhou, X. Zhang, Y. Liu, B. Yang, H. Zhang, Employing CdSexTe1–x alloyed quantum dots to avoid the temperature-dependent emission shift of light-emitting diodes. J. Phys. Chem. C 121, 5313–5323 (2017)CrossRefGoogle Scholar
  8. 8.
    L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Li L-s, X. Yan, Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010)CrossRefGoogle Scholar
  10. 10.
    K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)CrossRefGoogle Scholar
  12. 12.
    Mahasin Alam Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 6954–6960 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ozhukil Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Appl. Mater. Today 9, 350–371 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Dai, Y. Lei, M. Xu, P. Zhao, Z. Zhang, J. Zhou, Rare-earth free self-activated graphene quantum dots and copper-cysteamine phosphors for enhanced white light-emitting-diodes under single excitation. Sci. Rep. 7, 12872 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    W. Zuo, L. Tang, J. Xiang, R. Ji, L. Luo, L. Rogée, S. Ping Lau, Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms. Appl. Phys. Lett. 110, 221901 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    J. Ju, W. Liu, C.M. Perlaki, K. Chen, C. Feng, Q. Liu, Sustained and cost effective silver substrate for surface enhanced Raman spectroscopy based biosensing. Sci. Rep. 7, 6917 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    W. Kwon, Y.H. Kim, J.H. Kim, T. Lee, S. Do, Y. Park, M.S. Jeong, T.W. Lee, S.W. Rhee, High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Sci. Rep. 6, 24205 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Kleinman, R.R. Frontiera, A.I. Henry, J.A. Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  22. 22.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, J. Zhao, Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29, 205301 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    H. Wu, Y. Luo, C. Hou, D. Huo, Y. Zhou, S. Zou, J. Zhao, Y. Lei, Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface. Sens. Actuators B Chem. 285, 123–128 (2019)CrossRefGoogle Scholar
  25. 25.
    T.-H. Chang, Y.-C. Chang, C.-M. Chen, K.-W. Chuang, C.-M. Chou, A facile method to directly deposit the large-scale Ag nanoparticles on a silicon substrate for sensitive, uniform, reproducible and stable SERS substrate. J. Alloys Compd. 782, 887–892 (2019)CrossRefGoogle Scholar
  26. 26.
    S. Wang, Z. Wang, N. Tang, C. Liu, S. He, B. Liu, H. Qu, X. Duan, W. Pang, Y. Wang, Hierarchical assembly of gold nanorod stripe patterns for sensing and cells alignment. Nanotechnology 30, 175302 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, D.R.T. Zahn, Surface enhanced Raman scattering by CdS quantum dots. JETP Lett. 88, 799–801 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Hugall, J.J. Baumberg, S. Mahajan, Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl. Phys. Lett. 95, 141111 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Lee Y-b, S. Ho Lee, S. Lee, H. Lee, J. Kim, J. Joo, Surface enhanced Raman scattering effect of CdSe/ZnS quantum dots hybridized with Au nanowire. Appl. Phys. Lett. 102, 033109 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    E. Sheremet, A.G. Milekhin, R.D. Rodriguez, T. Weiss, M. Nesterov, E.E. Rodyakina, O.D. Gordan, L.L. Sveshnikova, T.A. Duda, V.A. Gridchin, V.M. Dzhagan, M. Hietschold, D.R.T. Zahn, Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Phys. Chem. Chem. Phys. 17, 21198–21203 (2015)CrossRefGoogle Scholar
  31. 31.
    K. Stadelmann, A. Elizabeth, N. Martín Sabanés, K.F. Domke, The SERS signature of PbS quantum dot oxidation. Vib. Spectrosc. 91, 157–162 (2017)CrossRefGoogle Scholar
  32. 32.
    E. Fazio, F. Neri, S. Savasta, S. Spadaro, S. Trusso, Surface-enhanced Raman scattering of SnO2 bulk material and colloidal solutions. Phys. Rev. B 85, 195423 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    I. Dogan, R. Gresback, T. Nozaki, M.C. van de Sanden, Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering. Sci. Rep. 6, 29508 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    D.O. Sigle, J.T. Hugall, S. Ithurria, B. Dubertret, J.J. Baumberg, Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering. Phys. Rev. Lett. 113, 087402 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    T. Vo-Dinh, M.Y.K. Hiromoto, G.M. Begun, R.L. Moody, Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 56, 1667–1670 (1984)CrossRefGoogle Scholar
  36. 36.
    H. Frederich, F. Wen, J. Laverdant, L. Coolen, C. Schwob, A. Maître, Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal. OExpr 19, 24424–24433 (2011)ADSGoogle Scholar
  37. 37.
    Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, Y. Tang, Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: an ultrasensitive and reproducible SERS substrate. Sci. Rep. 6, 32314 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M.C. Wu, M.P. Lin, S.W. Chen, P.H. Lee, J.H. Li, W.F. Su, Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Adv. 4, 10043 (2014)CrossRefGoogle Scholar
  39. 39.
    W.-C. Lin, L.-S. Liao, Y.-H. Chen, H.-C. Chang, D.P. Tsai, H.-P. Chiang, Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6, 201–206 (2010)CrossRefGoogle Scholar
  40. 40.
    H.T. Ngo, H.N. Wang, A.M. Fales, T. Vo-Dinh, Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal. Chem. 85, 6378–6383 (2013)CrossRefGoogle Scholar
  41. 41.
    A.R. Campos, Z. Gao, M.G. Blaber, R. Huang, G.C. Schatz, R.P. Van Duyne, C.L. Haynes, Surface-enhanced Raman spectroscopy detection of ricin b chain in human blood. J. Phys. Chem. C 120, 20961–20969 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, M.A. Young, O. Lyandres, R.P.V. Duyne, Rapid detection of an anthrax biomarker by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 127, 4484–4489 (2005)CrossRefGoogle Scholar
  43. 43.
    S.S. Masango, R.A. Hackler, A.-I. Henry, M.O. McAnally, G.C. Schatz, P.C. Stair, R.P. Van Duyne, Probing the chemistry of alumina atomic layer deposition using operando surface-enhanced raman spectroscopy. J. Phys. Chem. C 120, 3822–3833 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Frederich, F. Wen, J. Laverdant, W.D. de Marcillac, C. Schwob, L. Coolen, A. Maître, Determination of the surface plasmon polariton extraction efficiency from a self-assembled plasmonic crystal. Plasmonics 9, 917–924 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Inoue, H. Sugimoto, M. Fujii, Photoluminescence enhancement of silicon quantum dot monolayer by double resonance plasmonic substrate. J. Phys. Chem. C 121, 11609–11615 (2017)CrossRefGoogle Scholar
  46. 46.
    W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)ADSCrossRefGoogle Scholar
  47. 47.
    G. Milczarek, M. Motylenko, A. Modrzejewska-Sikorska, Ł. Klapiszewski, M. Wysokowski, V.V. Bazhenov, A. Piasecki, E. Konował, H. Ehrlich, T. Jesionowski, Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv. 4, 52476–52484 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)CrossRefGoogle Scholar
  49. 49.
    L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    J. Laverdant, S. Buil, B. Bérini, X. Quélin, Polarization dependent near-field speckle of random gold films. Phys. Rev. B 77, 165406 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    S. Buil, J. Laverdant, B. Berini, P. Maso, J.-P. Hermier, A.X. Quélin, FDTD simulations of localization and enhancements on fractal plasmonics nanostructures. OExpr 20, 11968–11975 (2012)ADSGoogle Scholar
  53. 53.
    E.S.F. Neto, S.W. da Silva, P.C. Morais, M.I. Vasilevskiy, M.A. Pereira-da-Silva, N.O. Dantas, Resonant Raman scattering in CdSxSe1−x nanocrystals: effects of phonon confinement, composition, and elastic strain. J. Raman Spectrosc. 42, 1660–1669 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    A.V. Bragas, C. Aku-Leh, R. Merlin, Raman and ultrafast optical spectroscopy of acoustic phonons inCdTe0.68Se0.32 quantum dots. Phys. Rev. B 73, 125305–125309 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    R. Beams, L.G. Cancado, L. Novotny, Low temperature raman study of the electron coherence length near graphene edges. Nano Lett. 11, 1177–1181 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)ADSCrossRefGoogle Scholar
  57. 57.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.-M. Frigerio, J.-P. Hermier, A. Maître, Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. OExpr 18, 7440–7455 (2010)ADSGoogle Scholar
  59. 59.
    Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    C. Lethiec, G. Binard, T. Popescu, H. Frederich, H. Phan Ngoc, E. Yraola, C. Schwob, F. Charra, L. Coolen, L. Douillard, A. Maître, Plasmonics of opal surface: a combined near- and far-field approach. J. Phys. Chem. C 120, 19308–19315 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pham Nam Thang
    • 1
    • 2
  • Le Xuan Hung
    • 3
  • Dao Nguyen Thuan
    • 1
  • Nguyen Thu Loan
    • 1
  • Guillaume Binard
    • 4
  • Willy Daney de Marcillac
    • 4
  • Agnès Maître
    • 4
  • Nguyen Quang Liem
    • 1
  • Laurent Coolen
    • 4
  • Pham Thu Nga
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Institute of Theoretical and Applied ResearchDuy Tan UniversityDa NangVietnam
  4. 4.Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut de NanoSciences de Paris (INSP)ParisFrance

Personalised recommendations