Skip to main content
Log in

Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we perform surface-enhanced Raman scattering (SERS) with a periodically corrugated metallic substrate obtained by evaporating an Ag film onto an artificial opal crystal, which is a self-assembled lattice of SiO2 600-nm spheres. These metallic-film-on-nanosphere (MFON) surfaces are characterized by scanning electron microscopy for different Ag film thicknesses ranging from 44 to 620 nm. Raman scattering spectra are measured for two different types of quantum dots, CdTeSe quantum dots (QDs) and graphene quantum dots (GQDs). We are able to show that enhancement of the Raman spectra can be obtained for all MFON substrates and for both types of QDs. For both CdTeSe and graphene quantum dots, the strongest SERS effect was observed in samples with 135 nm Ag thickness. This is attributed to the formation of hot spots in the nanogap dips of the Ag film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.X. Hung, P.D. Bassène, P.N. Thang, N.T. Loan, W. Daney de Marcillac, A.R. Dhawan, F. Feng, J.U. Esparza-Villa, N.T. Thuc Hien, N.Q. Liem, L. Coolen, P.T. Nga, Near-infrared emitting CdTeSe alloyed quantum dots: Raman scattering, photoluminescence and single-emitter optical properties. RSC Adv. 7, 47966–47974 (2017)

    Article  Google Scholar 

  2. L. Li, Y. Chen, Q. Lu, J. Ji, Y. Shen, M. Xu, R. Fei, G. Yang, K. Zhang, J.-R. Zhang, J.-J. Zhu, Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Sci. Rep. 3, 01529 (2013)

    Article  ADS  Google Scholar 

  3. R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003)

    Article  Google Scholar 

  4. R. Wang, Y. Shang, P. Kanjanaboos, W. Zhou, Z. Ning, E.H. Sargent, Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 9, 1130–1143 (2016)

    Article  Google Scholar 

  5. W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)

    Article  Google Scholar 

  6. J. Xue, X. Chen, S. Liu, F. Zheng, L. He, L. Li, J.J. Zhu, Highly enhanced fluorescence of CdSeTe quantum dots coated with polyanilines via in-situ polymerization and cell imaging application. ACS Appl. Mater. Interfaces. 7, 19126–19133 (2015)

    Article  Google Scholar 

  7. H. Zou, M. Liu, D. Zhou, X. Zhang, Y. Liu, B. Yang, H. Zhang, Employing CdSexTe1–x alloyed quantum dots to avoid the temperature-dependent emission shift of light-emitting diodes. J. Phys. Chem. C 121, 5313–5323 (2017)

    Article  Google Scholar 

  8. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)

    Article  ADS  Google Scholar 

  9. Li L-s, X. Yan, Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010)

    Article  Google Scholar 

  10. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)

    Article  ADS  Google Scholar 

  11. H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)

    Article  Google Scholar 

  12. Mahasin Alam Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 6954–6960 (2014)

    Article  Google Scholar 

  13. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013)

    Article  ADS  Google Scholar 

  14. M. Ozhukil Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Appl. Mater. Today 9, 350–371 (2017)

    Article  Google Scholar 

  15. L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2014)

    Article  Google Scholar 

  16. W. Dai, Y. Lei, M. Xu, P. Zhao, Z. Zhang, J. Zhou, Rare-earth free self-activated graphene quantum dots and copper-cysteamine phosphors for enhanced white light-emitting-diodes under single excitation. Sci. Rep. 7, 12872 (2017)

    Article  ADS  Google Scholar 

  17. W. Zuo, L. Tang, J. Xiang, R. Ji, L. Luo, L. Rogée, S. Ping Lau, Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms. Appl. Phys. Lett. 110, 221901 (2017)

    Article  ADS  Google Scholar 

  18. J. Ju, W. Liu, C.M. Perlaki, K. Chen, C. Feng, Q. Liu, Sustained and cost effective silver substrate for surface enhanced Raman spectroscopy based biosensing. Sci. Rep. 7, 6917 (2017)

    Article  ADS  Google Scholar 

  19. W. Kwon, Y.H. Kim, J.H. Kim, T. Lee, S. Do, Y. Park, M.S. Jeong, T.W. Lee, S.W. Rhee, High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Sci. Rep. 6, 24205 (2016)

    Article  ADS  Google Scholar 

  20. S.L. Kleinman, R.R. Frontiera, A.I. Henry, J.A. Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)

    Article  Google Scholar 

  21. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  22. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  ADS  Google Scholar 

  23. W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, J. Zhao, Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29, 205301 (2018)

    Article  ADS  Google Scholar 

  24. H. Wu, Y. Luo, C. Hou, D. Huo, Y. Zhou, S. Zou, J. Zhao, Y. Lei, Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface. Sens. Actuators B Chem. 285, 123–128 (2019)

    Article  Google Scholar 

  25. T.-H. Chang, Y.-C. Chang, C.-M. Chen, K.-W. Chuang, C.-M. Chou, A facile method to directly deposit the large-scale Ag nanoparticles on a silicon substrate for sensitive, uniform, reproducible and stable SERS substrate. J. Alloys Compd. 782, 887–892 (2019)

    Article  Google Scholar 

  26. S. Wang, Z. Wang, N. Tang, C. Liu, S. He, B. Liu, H. Qu, X. Duan, W. Pang, Y. Wang, Hierarchical assembly of gold nanorod stripe patterns for sensing and cells alignment. Nanotechnology 30, 175302 (2019)

    Article  ADS  Google Scholar 

  27. A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, D.R.T. Zahn, Surface enhanced Raman scattering by CdS quantum dots. JETP Lett. 88, 799–801 (2009)

    Article  ADS  Google Scholar 

  28. J.T. Hugall, J.J. Baumberg, S. Mahajan, Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl. Phys. Lett. 95, 141111 (2009)

    Article  ADS  Google Scholar 

  29. Lee Y-b, S. Ho Lee, S. Lee, H. Lee, J. Kim, J. Joo, Surface enhanced Raman scattering effect of CdSe/ZnS quantum dots hybridized with Au nanowire. Appl. Phys. Lett. 102, 033109 (2013)

    Article  ADS  Google Scholar 

  30. E. Sheremet, A.G. Milekhin, R.D. Rodriguez, T. Weiss, M. Nesterov, E.E. Rodyakina, O.D. Gordan, L.L. Sveshnikova, T.A. Duda, V.A. Gridchin, V.M. Dzhagan, M. Hietschold, D.R.T. Zahn, Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Phys. Chem. Chem. Phys. 17, 21198–21203 (2015)

    Article  Google Scholar 

  31. K. Stadelmann, A. Elizabeth, N. Martín Sabanés, K.F. Domke, The SERS signature of PbS quantum dot oxidation. Vib. Spectrosc. 91, 157–162 (2017)

    Article  Google Scholar 

  32. E. Fazio, F. Neri, S. Savasta, S. Spadaro, S. Trusso, Surface-enhanced Raman scattering of SnO2 bulk material and colloidal solutions. Phys. Rev. B 85, 195423 (2012)

    Article  ADS  Google Scholar 

  33. I. Dogan, R. Gresback, T. Nozaki, M.C. van de Sanden, Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering. Sci. Rep. 6, 29508 (2016)

    Article  ADS  Google Scholar 

  34. D.O. Sigle, J.T. Hugall, S. Ithurria, B. Dubertret, J.J. Baumberg, Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering. Phys. Rev. Lett. 113, 087402 (2014)

    Article  ADS  Google Scholar 

  35. T. Vo-Dinh, M.Y.K. Hiromoto, G.M. Begun, R.L. Moody, Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 56, 1667–1670 (1984)

    Article  Google Scholar 

  36. H. Frederich, F. Wen, J. Laverdant, L. Coolen, C. Schwob, A. Maître, Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal. OExpr 19, 24424–24433 (2011)

    ADS  Google Scholar 

  37. Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, Y. Tang, Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: an ultrasensitive and reproducible SERS substrate. Sci. Rep. 6, 32314 (2016)

    Article  ADS  Google Scholar 

  38. M.C. Wu, M.P. Lin, S.W. Chen, P.H. Lee, J.H. Li, W.F. Su, Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Adv. 4, 10043 (2014)

    Article  Google Scholar 

  39. W.-C. Lin, L.-S. Liao, Y.-H. Chen, H.-C. Chang, D.P. Tsai, H.-P. Chiang, Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6, 201–206 (2010)

    Article  Google Scholar 

  40. H.T. Ngo, H.N. Wang, A.M. Fales, T. Vo-Dinh, Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal. Chem. 85, 6378–6383 (2013)

    Article  Google Scholar 

  41. A.R. Campos, Z. Gao, M.G. Blaber, R. Huang, G.C. Schatz, R.P. Van Duyne, C.L. Haynes, Surface-enhanced Raman spectroscopy detection of ricin b chain in human blood. J. Phys. Chem. C 120, 20961–20969 (2016)

    Article  Google Scholar 

  42. X. Zhang, M.A. Young, O. Lyandres, R.P.V. Duyne, Rapid detection of an anthrax biomarker by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 127, 4484–4489 (2005)

    Article  Google Scholar 

  43. S.S. Masango, R.A. Hackler, A.-I. Henry, M.O. McAnally, G.C. Schatz, P.C. Stair, R.P. Van Duyne, Probing the chemistry of alumina atomic layer deposition using operando surface-enhanced raman spectroscopy. J. Phys. Chem. C 120, 3822–3833 (2016)

    Article  Google Scholar 

  44. H. Frederich, F. Wen, J. Laverdant, W.D. de Marcillac, C. Schwob, L. Coolen, A. Maître, Determination of the surface plasmon polariton extraction efficiency from a self-assembled plasmonic crystal. Plasmonics 9, 917–924 (2014)

    Article  Google Scholar 

  45. A. Inoue, H. Sugimoto, M. Fujii, Photoluminescence enhancement of silicon quantum dot monolayer by double resonance plasmonic substrate. J. Phys. Chem. C 121, 11609–11615 (2017)

    Article  Google Scholar 

  46. W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  ADS  Google Scholar 

  47. G. Milczarek, M. Motylenko, A. Modrzejewska-Sikorska, Ł. Klapiszewski, M. Wysokowski, V.V. Bazhenov, A. Piasecki, E. Konował, H. Ehrlich, T. Jesionowski, Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv. 4, 52476–52484 (2014)

    Article  Google Scholar 

  48. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)

    Article  Google Scholar 

  49. L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014)

    Article  ADS  Google Scholar 

  50. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014)

    Article  ADS  Google Scholar 

  51. J. Laverdant, S. Buil, B. Bérini, X. Quélin, Polarization dependent near-field speckle of random gold films. Phys. Rev. B 77, 165406 (2008)

    Article  ADS  Google Scholar 

  52. S. Buil, J. Laverdant, B. Berini, P. Maso, J.-P. Hermier, A.X. Quélin, FDTD simulations of localization and enhancements on fractal plasmonics nanostructures. OExpr 20, 11968–11975 (2012)

    ADS  Google Scholar 

  53. E.S.F. Neto, S.W. da Silva, P.C. Morais, M.I. Vasilevskiy, M.A. Pereira-da-Silva, N.O. Dantas, Resonant Raman scattering in CdSxSe1−x nanocrystals: effects of phonon confinement, composition, and elastic strain. J. Raman Spectrosc. 42, 1660–1669 (2011)

    Article  ADS  Google Scholar 

  54. A.V. Bragas, C. Aku-Leh, R. Merlin, Raman and ultrafast optical spectroscopy of acoustic phonons inCdTe0.68Se0.32 quantum dots. Phys. Rev. B 73, 125305–125309 (2006)

    Article  ADS  Google Scholar 

  55. R. Beams, L.G. Cancado, L. Novotny, Low temperature raman study of the electron coherence length near graphene edges. Nano Lett. 11, 1177–1181 (2011)

    Article  ADS  Google Scholar 

  56. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  57. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  58. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.-M. Frigerio, J.-P. Hermier, A. Maître, Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. OExpr 18, 7440–7455 (2010)

    ADS  Google Scholar 

  59. Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008)

    Article  ADS  Google Scholar 

  60. C. Lethiec, G. Binard, T. Popescu, H. Frederich, H. Phan Ngoc, E. Yraola, C. Schwob, F. Charra, L. Coolen, L. Douillard, A. Maître, Plasmonics of opal surface: a combined near- and far-field approach. J. Phys. Chem. C 120, 19308–19315 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is possible thanks to PICS cooperation project (6456) between CNRS, INSP-UPMC-VAST and funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 103.03-2018.03. The authors thank the National Key Laboratory for Electronic Materials and Devices-IMS and Duy Tan University for the use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Thu Nga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thang, P.N., Hung, L.X., Thuan, D.N. et al. Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates. Appl. Phys. A 125, 337 (2019). https://doi.org/10.1007/s00339-019-2641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2641-6

Navigation