Advertisement

Applied Physics A

, 125:333 | Cite as

Investigation of structural, magnetic and dielectric properties of Al-doped samarium iron garnet

  • Mahananda Brahma
  • Aakansha
  • Vishwajit M. Gaikwad
  • S. RaviEmail author
Article
  • 49 Downloads

Abstract

Polycrystalline Sm3(Fe1−xAlx)5O12 (x =0, 0.1, 0.2, 0.3, 0.4) samples were prepared in single phase form. Rietveld analysis of X-ray diffraction patterns shows that samples crystallize in cubic structure (space group: \(Ia\overline{3} d\)) with a systematic decrease in lattice constant with Al doping. Magnetization measurements show that all these samples exhibit ferrimagnetic transition whose transition temperature (Tc) decreases from 562 K for x =0 to 350 K for x =0.4 due to the dilution of Fe3+–O–Fe3+ networks. In addition to that they undergo spin reorientation transition at TSR~ 70 K with considerable magnetic irreversibility below TSR. Interestingly the x =0.4 sample undergoes magnetic compensation at 26 K. Improvement of frequency response of dielectric constant (\(\varepsilon^{\prime}\)) and loss tangent (tan \(\delta\)) is observed upon Al doping in a wide frequency range of 102–109 Hz.

Notes

Acknowledgements

The authors acknowledge the Central Instrumental Facility (CIF), IIT Guwahati for providing FESEM, EDS, IMA and High-temperature VSM facility.

References

  1. 1.
    O. Opuchovic, A. Kareiva, K. Mazeika, D. Baltrunas, J. Magn. Magn. Mater. 422, 425 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    S. Huang, L.R. Shi, H.G. Sun, C.L. Li, L. Chen, S.L. Yuan, J. Alloys Compd. 674, 341 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Wu, F. Huang, T. Xu, R. Ti, X. Lu, Y. Kan, X. Lv, W. Zhu, J. Zhu, J. Appl. Phys. 117, 144101 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Phan, M.B. Morales, C.N. Chinnasamy, B. Latha, V.G. Harris, H. Srikanth, J. Phys. D Appl. Phys. 42, 115007 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    R.C. Booth, E.A.D. White, J. Phys. D Appl. Phys. 17, 579 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Gualtieri, S.M. Emo, T.R. Kinney, J. Appl. Phys. 69, 5978 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    A.I. Popov, Z.V. Gareeva, A.K. Zvezdin, Phys. Rev. B Condens. Matter Mater. Phys. 92, 1 (2015)Google Scholar
  8. 8.
    R.C. LeCraw, E.G. Spencer, C.S. Porter, Phys. Rev. 110, 1311 (1958)ADSCrossRefGoogle Scholar
  9. 9.
    S. Geller, M.A. Gilleo, Phys. Rev. 110, 73 (1958)ADSCrossRefGoogle Scholar
  10. 10.
    R. Pauthenet, J. Appl. Phys. 30, S290 (1959)ADSCrossRefGoogle Scholar
  11. 11.
    C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, V.G. Harris, J. Appl. Phys. 107, 137 (2010)CrossRefGoogle Scholar
  12. 12.
    M.S. Lataifeh, J. Phys. Soc. Japan 69, 2280 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    J.S. McCloy, B. Walsh, I.E.E.E. Trans, Magn. 49, 4253 (2013)CrossRefGoogle Scholar
  14. 14.
    E. Mallmann, S. Sombra, P.B.A. Fechine, Solid State Phenom. 202, 65 (2013)CrossRefGoogle Scholar
  15. 15.
    A.A. Sattar, H.M. Elsayed, A.M. Faramawy, J. Magn. Magn. Mater. 412, 172 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Malar Selvi, D. Chakraborty, C. Venkateswaran, J. Magn. Magn. Mater. 423, 39 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    B.Y. Sokolov, M.Z. Sharipov, Phys. Solid State 56, 975 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, J. Magn. Magn. Mater. 332, 180 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    X. Wu, X. Wang, Y. Liu, W. Cai, S. Peng, F. Huang, X. Lu, F. Yan, J. Zhu, Appl. Phys. Lett. 95, 2007 (2009)Google Scholar
  20. 20.
    T. Ramesh, R.S. Shinde, S.R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. Kalashnikova, V.V. Pavlov, A.V. Kimel, A. Kirilyuk, T. Rasing, R.V. Pisarev, Low Temp. Phys. 38, 863 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    V. Nekvasil, Czech. J. Phys. B 34, 1052 (1984)Google Scholar
  23. 23.
    H. Liu, L. Yuan, S. Wang, H. Fang, Y. Zhang, C. Hou, S. Feng, J. Mater. Chem. C 4, 10529 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Liu, L. Yuan, H. Qi, S. Wang, Y. Du, Y. Zhang, C. Hou, S. Feng, Dye. Pigment. 145, 418 (2017)CrossRefGoogle Scholar
  25. 25.
    Q.I. Mohaidat, M. Lataifeh, K. Hamasha, S.H. Mahmood, I. Bsoul, M. Awawdeh, Mater. Res. 21, 1 (2018)CrossRefGoogle Scholar
  26. 26.
    K. Bouziane, A. Yousif, H.M. Widatallah, J. Amighian, J. Magn. Magn. Mater. 320, 2330 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, J. Am. Ceram. Soc. 95, 1671 (2012)CrossRefGoogle Scholar
  28. 28.
    M.A. Musa, R.S. Azis, N.H. Osman, J. Hassan, M.M. Dihom, J. Aust. Ceram. Soc. 54, 55 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Abdullahi, S. Azis, N. Huda, J. Hassan, Results Phys. 7, 1135 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    L.N. Mahour, M. Manjunatha, H.K. Choudhary, R. Kumar, A.V. Anupama, R. Damle, K.P. Ramesh, B. Sahoo, J. Alloys Compd. 773, 612 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Gul, K. Akhtar, J. Alloys Compd. 765, 1139 (2018)CrossRefGoogle Scholar
  32. 32.
    A.S. Priya, D. Geetha, N. Kavitha, Vacuum 160, 453 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    C. Chauhan, R. Nandotaria, R. Jotania, Mater. Today Proc. 4, 9347 (2017)CrossRefGoogle Scholar
  34. 34.
    R.A. Young, The Rietveld method, IUCr monographs on crystallography (Oxford University Press, Oxford, 1995)Google Scholar
  35. 35.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)CrossRefGoogle Scholar
  36. 36.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)ADSCrossRefGoogle Scholar
  38. 38.
    Y.J. Siao, X. Qi, J. Alloys Compd. 691, 672 (2017)CrossRefGoogle Scholar
  39. 39.
    J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Phys. Rev. B Condens. Matter. Mater. Phys. 64, 1 (2001)CrossRefGoogle Scholar
  40. 40.
    C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. Eliceiri, BMC Bioinformatics 18, 1 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Chakrabarty, A. Dutta, M. Pal, J. Alloys Compd. 625, 216 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Chakrabarty, A. Sinha, A. Dutta, M. Pal, J. Magn. Magn. Mater. 468, 215 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    Aakansha, S. Ravi, J. Am. Ceram. Soc. 101, 5046 (2018)CrossRefGoogle Scholar
  44. 44.
    P.M. Levy, Phys. Rev. 135, A155 (1964)ADSCrossRefGoogle Scholar
  45. 45.
    G.W. Durbin, C.E. Johnson, L.A. Prelorendjo, M.F. Thomas, Le J. Phys. Colloq. 37, C6 (1976)Google Scholar
  46. 46.
    K. Zhang, K. Xu, X. Liu, Z. Zhang, Z. Jin, X. Lin, B. Li, S. Cao, G. Ma, Sci. Rep. 2016, 1 (2016)Google Scholar
  47. 47.
    T. Yamaguchi, J. Phys. Chem. Solids 35, 479 (1974)ADSCrossRefGoogle Scholar
  48. 48.
    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A Mater. Sci. Process. 112, 387 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 16580 (2017)CrossRefGoogle Scholar
  50. 50.
    S.-W. Choi, S.-H. Hong, Y.-M. Kim, J. Am. Ceram. Soc. 90, 4009 (2007)Google Scholar
  51. 51.
    K. Praveena, S. Srinath, J. Magn. Magn. Mater. 349, 45 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    S. Pandey, D. Kumar, O. Parkash, L. Pandey, Integr. Ferroelectr. 183, 141 (2017)CrossRefGoogle Scholar
  53. 53.
    M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ionics 180, 922 (2009)CrossRefGoogle Scholar
  54. 54.
    K.W. Wagner, Ann. Phys. 40, 817 (1973)Google Scholar
  55. 55.
    C.G. Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  56. 56.
    A. Aakansha, B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 10468 (2017)CrossRefGoogle Scholar
  57. 57.
    K. Funke, Solid State Ionics 28–30, 100 (1988)CrossRefGoogle Scholar
  58. 58.
    J. Wu, Q. Huang, D. Zeng, S. Zhang, L. Yang, D. Xia, Z. Xiong, C. Xie, Sensors Actuators. B Chem. 198, 62 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mahananda Brahma
    • 1
  • Aakansha
    • 1
  • Vishwajit M. Gaikwad
    • 1
  • S. Ravi
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations