Applied Physics A

, 125:325 | Cite as

Thermionic emission current in graphene-based electronic devices

  • Ling-Feng MaoEmail author


A new current equation for graphene/semiconductor or graphene/metal junctions in graphene-based electronic devices is proposed based on the thermionic emission theory. Temperature-dependent current density predicted by the proposed model agrees well with those experimental data reported in the literature. It can also explain the electric field and temperature-dependent effective Schottky barrier height observed in experiments. This is because a high drift velocity in graphene and its dependence on temperature can lead to a change in the effective Schottky barrier height. Due to the nonlinearity between current and temperature, the Richardson’s law will be broken down. The proposed model will benefit to better understand the current transport mechanism in graphene-like materials and graphene-based electronic devices.



The author acknowledges financial support from the National Natural Science Foundation of China under grant No. 61774014, and the Central Universities under Grant No. 06500010.


  1. 1.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Crigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Crigorieva, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Nature 446, 56 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L.F. Mao, X.J. Li, Z.O. Wang, J.Y. Wang, IEEE Electron Dev. Lett. 29, 1047 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L.F. Mao, Appl. Phys. A 98, 565 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    L.F. Mao, H. Ning, X. Li, Nanoscale Res. Lett. 10, 322 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    L.F. Mao, Nanotechnology 20, 275203 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    L.F. Mao, X. Li, C.Y. Zhu, Z.O. Wang, Z.H. Lu, J.F. Yang, H.W. Zhu, Y.S. Liu, J.Y. Wang, IEEE Electron Device Lett. 31, 491 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L.F. Mao, Carbon 49, 2709 (2011)CrossRefGoogle Scholar
  14. 14.
    L.F. Mao, Pramana. J. Phys. 81, 309 (2013)Google Scholar
  15. 15.
    L.F. Mao, Z.O. Wang, L.J. Zhang, A.M. Ji, C.Y. Zhu, J. Yang, IETE J. Res. 58, 65 (2012)CrossRefGoogle Scholar
  16. 16.
    L.F. Mao, J. Wang, L. Li, H. Ning, C. Hu, Carbon 119, 446 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Carbon 49, 2033 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.E. Byun, P. Kim, I. Yoo, H.-J. Chung, K. Kim, Science 336, 1140 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L.F. Mao, H. Ning, Z.L. Huo, J.Y. Wang, Sci. Rep. 5, 18307 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Khurelbaatar, Y.H. Kil, K.H. Shim, H. Cho, M.J. Kim, Y.T. Kim, C.J. Choi, J. Semicond. Tech. Sci. 15, 7 (2015)CrossRefGoogle Scholar
  21. 21.
    G. Luongo, A. Di Bartolomeo, F. Giubileo, C.A. Chavarin, C. Wenger, J. Phys. D Appl. Phys. 51, 255305 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Di Bartolomeo, G. Luongo, L. Iemmo, F. Urban, F. Giubileo, IEEE Trans. Nanotechnol. 17, 1133 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 133506 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Kim, T.H. Seo, M.J. Kim, K.M. Song, E.K. Suh, H. Kim, Nano Res. 8, 1327 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Tongay, T. Schumann, A.F. Hebard, Appl. Phys. Lett. 95, 222103 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A.T. Di Bartolomeo, F. Giubileo, G. Luongo, L. Iemmo, N. Martucciello, G. Niu, F.M. Fraschke, O. Skibitzki, T. Schroeder, G. Lupina, 2D Mater. 4, 015024 (2016)CrossRefGoogle Scholar
  27. 27.
    S.J. Liang, W. Hu, A. Di Bartolomeo, S. Adam, L.K. Ang, IEEE Int. Electron Devices Meet. 2016, 14 (2016)Google Scholar
  28. 28.
    K. Berke, S. Tongay, M.A. McCarthy, A.G. Rinzler, B.R. Appleton, A.F. Hebard, J. Phys. Condens. Mat. 24, 255802 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    D. Jimenez, O. Moldovan, IEEE Trans. Electron. Dev. 58, 4049 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wliey, New York, 2007)Google Scholar
  32. 32.
    F. Mandl, Statistical Physics, 2nd edn. (Wiley, Manchester, 2008)Google Scholar
  33. 33.
    T. Low, J. Appenzeller, Phys. Rev. B 80, 155406 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    V.K. Khanna, Extreme-Temperature and Harsh-Environment Electronics (IOP Publishing Limited, Bristol, 2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations