Advertisement

Applied Physics A

, 125:313 | Cite as

Biological synthesis, characterization, and antibacterial activity of nickel-doped copper ferrite nanoparticles

  • B. Gayathri Manju
  • P. RajiEmail author
Article
  • 17 Downloads

Abstract

In this study, nickel-doped copper ferrite (Cu1−xNixFe2O4 x = 0, 0.2, 0.5, 0.8, 1) nanoparticles (NPs) were synthesized by combustion method using honey as a reducing agent. Cu1−xNixFe2O4NPs were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning transmission electron microscopy (STEM) with energy-dispersive spectroscopy, dielectric technique, ultraviolet–visible (UV–Vis) spectroscopy, photoluminescence (PL) spectra, and a vibrating sample magnetometer, and tested for their antimicrobial activity. In XRD analysis, all compositions show formation of a cubic structure and the lattice constant increased and decreased in the crystallites during doping of nickel with copper ferrite. Furthermore, particle size distribution and morphology of NPs were assessed by STEM. The band gap of NPs can be tuned in the range of 1.6–1.7 eV by varying the dopant concentration. The wide visible emission band is observed throughout the PL spectrum. The hysteresis loop shows ferromagnetism at room temperature. A study of dielectric properties showed that dielectric constant and dielectric loss sharply decreased for all compositions and reached a constant value. The antimicrobial activity of the synthesized NPs was tested against Escherichia coli (G−), Klebsiella pneumonia (G−), Staphylococcus aureus (G+), Bacillus subtilis (G+) and showed excellent results.

Notes

References

  1. 1.
    S. Kanagasubbulakshmi, K. Kadirvelu, Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2(4), 422–427 (2017)CrossRefGoogle Scholar
  2. 2.
    K.S.V. Gottimukkala, R.P. Harika, D. Zamare, Green synthesis of iron nanoparticles using green tea leaves extract. J. Nanomed. Biother. Discov. 7, 151 (2017)Google Scholar
  3. 3.
    X. Lasheras, M. Insausti, I.G. Muro, E. Garaio, F. Plazaola, M. Moros, L. Lezama, Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications. J. Phys. Chem. C 120(6), 3492–3500 (2016).  https://doi.org/10.1021/acs.jpcc.5b10216 CrossRefGoogle Scholar
  4. 4.
    J. Jacob, M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite. J. Appl. Phys. 107(11), 114310 (2010).  https://doi.org/10.1063/1.3429202 ADSCrossRefGoogle Scholar
  5. 5.
    A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015).  https://doi.org/10.1016/j.jmmm.2015.05.076 ADSCrossRefGoogle Scholar
  6. 6.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xInxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 417, 130–136 (2016).  https://doi.org/10.1016/j.jmmm.2016.05.052 ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanova, A.V. Trukhanova, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanova, E.L. Trukhanov, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017).  https://doi.org/10.1016/j.jmmm.2016.10.151 ADSCrossRefGoogle Scholar
  8. 8.
    A. Subha, M.G. Shalini, S.C. Sahoo, Magnetic studies of CuFe2O4 nanoparticles prepared by co-precipitation method. In AIP Conference Proceedings. AIP Publishing. (2016).  https://doi.org/10.1063/1.4946467
  9. 9.
    H.S. Ahamad, N.S. Meshram, S.B. Bankar, S.J. Dhoble, K.G. Rewatkar, Structural properties of CuxNi1-xFe2O4 nano ferrites prepared by urea-gel microwave auto combustion method. Ferroelectrics 516(1), 67–73 (2017).  https://doi.org/10.1080/00150193.2017.1362285 CrossRefGoogle Scholar
  10. 10.
    V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Study of the crystalline and magnetic structures of BaFe11.4Al0.6O19 in a wide temperature range, J. Surf. Investig. 9 (2015) 17-23.  https://doi.org/10.1134/S1027451015010176 CrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range, J. Alloys Compd. 689 (2016) 383-393.  https://doi.org/10.1016/j.jallcom.2016.07.309 CrossRefGoogle Scholar
  12. 12.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites, Ceram. Int. 44 (2018) 290-300.  https://doi.org/10.1016/j.ceramint.2017.09.172.Substituted M-type hexaferrites
  13. 13.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016).  https://doi.org/10.1134/S0021364016020132 ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017).  https://doi.org/10.1016/j.ceramint.2017.01.096 CrossRefGoogle Scholar
  15. 15.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, D.A. Krivchenya, Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys. Solid State 59, 737–745 (2017).  https://doi.org/10.1134/S1063783417040308 ADSCrossRefGoogle Scholar
  16. 16.
    M. Salavati-Niasari, T. Mahmoudi, M. Sabet, S.M. Hosseinpour-Mashkani, F. Soofivand, F. Tavakoli, Synthesis and characterization of copper ferrite nanocrystals via coprecipitation. J. Clust. Sci. 23(4), 1003–1010 (2012).  https://doi.org/10.1007/s10876-012-0486-7 CrossRefGoogle Scholar
  17. 17.
    M. Rashad, R. Mohamed, M. Ibrahim, L. Ismail, E. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23(3), 315–323 (2012).  https://doi.org/10.1016/j.apt.2011.04.005 CrossRefGoogle Scholar
  18. 18.
    K.C. Verma et al., Hydrothermal synthesis of NiFe2O4, Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.4Fe2O4/SrFe2O4: nanostructure, magnetic and dielectric properties. Indian J. Pure Appl. Phys. IJPAP 52(8), 550–555 (2015)Google Scholar
  19. 19.
    A. Ghasemi, E. Ghasemi, E. Paimozd, Influence of copper cations on the magnetic properties of NiCuZn ferrite nanoparticles. J. Magn. Magn. Mater. 323(11), 1541–1545 (2011).  https://doi.org/10.1016/j.jmmm.2011.01.014 ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 9, 24 (2019).  https://doi.org/10.3390/nano9010024 CrossRefGoogle Scholar
  21. 21.
    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202–213 (2019).  https://doi.org/10.3390/nano9020202 CrossRefGoogle Scholar
  22. 22.
    D. Gingasu, I. Mindru, L. Patron, J.M. Calderon-Moreno, O.C. Mocioiu, S. Preda, M.C. Chifiriuc, Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater. 2016, 1–12 (2016).  https://doi.org/10.1155/2016/2106756 CrossRefGoogle Scholar
  23. 23.
    T. Eteraf-Oskouei, M. Najafi, Traditional and modern uses of natural honey in human diseases: a review. Iran. J. Basic Med. Sci. 16(6), 731 (2013)Google Scholar
  24. 24.
    A. Moussa, A. Saad, How honey acts as an antioxidant? Med. Aromat. Plants (2012).  https://doi.org/10.4172/2167-0412.1000e121 CrossRefGoogle Scholar
  25. 25.
    E.R. Balasooriya, C.D. Jayasinghe, U.A. Jayawardena, R.W. Ruwanthika, R.M. Silva, P.V. Udagama, Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J. Nanomater. 2017, 1–10 (2017).  https://doi.org/10.1155/2017/5919836 CrossRefGoogle Scholar
  26. 26.
    B. Duong, S. Seraphin, P. Laokul, C. Masingboon, S. Maensiri, Ni-Cu-Zn ferrite prepared by Aloe vera plant extract or egg white. Microsc. Microanal. 14(S2), 326–327 (2008).  https://doi.org/10.1017/s1431927608083839 ADSCrossRefGoogle Scholar
  27. 27.
    G. Raja, S. Gopinath, R.A. Raj, A.K. Shukla, M.S. Alhoshan, K. Sivakumar, Comparative investigation of CuFe2O4 nano and microstructures for structural, morphological, optical and magnetic properties. Physica E 83, 69–73 (2016).  https://doi.org/10.1016/j.physe.2016.04.019 ADSCrossRefGoogle Scholar
  28. 28.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, V. Enev, Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J. Mater. Sci.: Mater. Electron. 28(8), 6245–6261 (2017).  https://doi.org/10.1007/s10854-016-6305-4 CrossRefGoogle Scholar
  29. 29.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017).  https://doi.org/10.1016/j.jpcs.2017.04.004 ADSCrossRefGoogle Scholar
  30. 30.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017).  https://doi.org/10.1016/j.jpcs.2017.05.029 ADSCrossRefGoogle Scholar
  31. 31.
    M. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suriyanarayanan, M. Deepty, C. Prajapat, D. Sastry, Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antimicrobial activity. J. Magn. Magn. Mater. 469, 691–697 (2019).  https://doi.org/10.1016/j.jmmm.2018.09.039 ADSCrossRefGoogle Scholar
  32. 32.
    N. Sanpo, J. Wang, C.C. Berndt, Effect of zinc substitution on microstructure and antimicrobial properties of cobalt ferrite nanopowders synthesized by sol-gel methods. Adv. Mater. Res. 535–537, 436–439 (2012).  https://doi.org/10.4028/www.scientific.net/amr.535-537.436 CrossRefGoogle Scholar
  33. 33.
    N. Sanpo, C.C. Berndt, J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J. Appl. Phys. 112(8), 084333 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9(3), 5830–5837 (2013).  https://doi.org/10.1016/j.actbio.2012.10.03 CrossRefGoogle Scholar
  35. 35.
    Z. Lazarevic, C. Jovalekic, D. Sekulic, M. Slankamenac, M. Romcevic, A. Milutinovic, N. Romcevic, Characterization of nanostructured spinel NiFe2O4 obtained by soft mechanochemical synthesis. Sci. Sinter. 44(3), 331–339 (2012).  https://doi.org/10.2298/sos1203331l CrossRefGoogle Scholar
  36. 36.
    L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Process. 40, 564–569 (2015).  https://doi.org/10.1016/j.mssp.2015.07.027 CrossRefGoogle Scholar
  37. 37.
    K. Babu, G.S. Kumar, G. Satyanarayana, B. Sailaja, C.C. Lakshmi, Microstructural and magnetic properties of Ni1−xCuxFe2O4 (x = 0.05, 0.1 and 0.15) nano-crystalline ferrites. J. Sci. 3(2), 236–242 (2018).  https://doi.org/10.1016/j.jsamd.2018.04.003 CrossRefGoogle Scholar
  38. 38.
    S. Hoque, M. Choudhury, M. Islam, Characterization of Ni–Cu mixed spinel ferrite. J. Magn. Magn. Mater. 251(3), 292–303 (2002).  https://doi.org/10.1016/s0304-8853(02)00700-x ADSCrossRefGoogle Scholar
  39. 39.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd-Ba optimal-doped manganites. J. Low Temp. Phys. 149, 185–199 (2007).  https://doi.org/10.1007/s10909-007-9507-6 ADSCrossRefGoogle Scholar
  40. 40.
    F. Shahbaz Tehrani, V. Daadmehr, A.T. Rezakhani, R. Hosseini Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25(7), 2443–2455 (2012).  https://doi.org/10.1007/s10948-012-1655-5 CrossRefGoogle Scholar
  41. 41.
    V. Jeseentharani et al., Synthesis of metal ferrite (MFe2O4, M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. 8(3), 358–370 (2013)CrossRefGoogle Scholar
  42. 42.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018).  https://doi.org/10.1016/j.jmmm.2018.02.078 ADSCrossRefGoogle Scholar
  43. 43.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12-xMexO19 (Me = In3+ and Ga3+; x = 0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018).  https://doi.org/10.1016/j.jmmm.2018.05.036 ADSCrossRefGoogle Scholar
  44. 44.
    X. Tan, G. Li, Y. Zhao, C. Hu, The effect of Cu content on the structure of Ni1−xCuxFe2O4 spinels. Mater. Res. Bull. 44(12), 2160–2168 (2009).  https://doi.org/10.1016/j.materresbull.2009.08.018 CrossRefGoogle Scholar
  45. 45.
    S. Sagadevan, Z.Z. Chowdhury, R.F. Rafique, Preparation and characterization of nickel ferrite nanoparticles via Co-precipitation method. Mater. Res. 21(2), 3 (2018).  https://doi.org/10.1590/1980-5373-mr-2016-0533 CrossRefGoogle Scholar
  46. 46.
    V.S. Kirankumar, S. Sumathi, Photocatalytic and antimicrobial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 29(10), 8738–8746 (2018).  https://doi.org/10.1007/s10854-018-8890-x CrossRefGoogle Scholar
  47. 47.
    A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1−xFe2O4) through co-precipitation method. J. Mater. Sci.: Mater. Electron. 28(24), 18480–18488 (2017).  https://doi.org/10.1007/s10854-017-7795-4 CrossRefGoogle Scholar
  48. 48.
    N. Kislov, S. Srinivasan, Y. Emirov, E. Stefanakos, Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mater. Sci. Eng. B 153(1–3), 70–77 (2008).  https://doi.org/10.1016/j.mseb.2008.10.032 CrossRefGoogle Scholar
  49. 49.
    A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013).  https://doi.org/10.1016/j.spmi.2013.09.021 ADSCrossRefGoogle Scholar
  50. 50.
    L. Zhuge, X. Wu, Z. Wu, X. Yang, X. Chen, Q. Chen, Structure and deep ultraviolet emission of Co-doped ZnO films with Co3O4 nano-clusters. Mater. Chem. Phys. 120(2–3), 480–483 (2010).  https://doi.org/10.1016/j.matchemphys.2009.11.036 CrossRefGoogle Scholar
  51. 51.
    V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics 4(11), 2613–2637 (2017).  https://doi.org/10.1021/acsphotonics.7b00777 CrossRefGoogle Scholar
  52. 52.
    Z. Wu, S. Tyan, H. Chen, J. Huang, C. Wu, C. Lee, T. Mo, Photoluminescence and electrical properties of bidirectional ZnO nanowires on Zn foils via a thermal oxidation method. RSC Adv. 7(10), 5807–5812 (2017).  https://doi.org/10.1039/c6ra25544b CrossRefGoogle Scholar
  53. 53.
    A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013).  https://doi.org/10.1016/j.molstruc.2012.11.007 ADSCrossRefGoogle Scholar
  54. 54.
    I. Kamińska, K. Fronc, B. Sikora, K. Koper, R. Minikayev, W. Paszkowicz, D. Elbaum, Synthesis of ZnAl2O4:(Er3, Yb3) spinel-type nanocrystalline upconverting luminescent marker in HeLa carcinoma cells, using a combustion aerosol method route. RSC Adv. 4(100), 56596–56604 (2014).  https://doi.org/10.1039/c4ra10976g CrossRefGoogle Scholar
  55. 55.
    C.H. Zang, D.M. Zhang, C.J. Tang, S.J. Fang, Z.J. Zong, Y.X. Yang, Y.S. Zhang, Optical properties of a ZnO/P nanostructure fabricated by a chemical vapor deposition method. J. Phys. Chem. C 113(43), 18527–18530 (2009).  https://doi.org/10.1021/jp905648m CrossRefGoogle Scholar
  56. 56.
    J.J. Vijaya, G. Sekaran, M. Bououdina, Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceram. Int. 41(1), 15–26 (2015).  https://doi.org/10.1016/j.ceramint.2013.10.145 CrossRefGoogle Scholar
  57. 57.
    S. Mahalakshmi, K.S. Manja, Ac electrical conductivity and dielectric behavior of nanophase nickel ferrites. J. Alloy. Compd. 457(1–2), 522–525 (2008).  https://doi.org/10.1016/j.jallcom.2007.03.045 CrossRefGoogle Scholar
  58. 58.
    R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B. Niazi, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. J. Magn. Magn. Mater. 405, 28–35 (2016).  https://doi.org/10.1016/j.jmmm.2015.12.019 ADSCrossRefGoogle Scholar
  59. 59.
    M.A. Ahmed, K.E. Rady, K.M. El-Shokrofy, A.A. Arais, M.S. Shams, The influence of Zn2+ ion on the microstructure and transport properties of Mn-Zn nanoferrites. Mater. Sci. Appl. 05(13), 932–942 (2014).  https://doi.org/10.4236/msa.2014.513095 CrossRefGoogle Scholar
  60. 60.
    M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014).  https://doi.org/10.1016/j.jallcom.2014.07.182 CrossRefGoogle Scholar
  61. 61.
    K. Verma, A. Kumar, D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites. J. Alloy. Compd. 526, 91–97 (2012).  https://doi.org/10.1016/j.jallcom.2012.02.089 CrossRefGoogle Scholar
  62. 62.
    S.L. Kadam et al., Dielectric behaviour and magnetoelectric effect in Ni0.5Co0.5Fe2O4+Ba0.8Pb0.2TiO3 ME composites. Mater. Lett. 59(2-3), 215–219 (2005)CrossRefGoogle Scholar
  63. 63.
    V. Anjana, S. John, P. Prakash, A.M. Nair, A.R. Nair, S. Sambhudevan, B. Shankar, Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by Co precipitation method. In IOP Conference Series: Materials Science and Engineering, vol. 310, p. 012024. (2018).  https://doi.org/10.1088/1757-899x/310/1/012024 CrossRefGoogle Scholar
  64. 64.
    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, Comparative study of the magnetic and electrical properties of Pr1-xBaxMnO3-δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276–282 (2001).  https://doi.org/10.1016/S0304-8853(01)00477-2 ADSCrossRefGoogle Scholar
  65. 65.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x ≤ 0.50) manganites. J. Phys. 15, 1783–1795 (2003).  https://doi.org/10.1088/0953-8984/15/10/324 CrossRefGoogle Scholar
  66. 66.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. JETP 111, 209–214 (2010).  https://doi.org/10.1134/S106377611008008X ADSCrossRefGoogle Scholar
  67. 67.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. JETP 113, 819–825 (2011).  https://doi.org/10.1134/S1063776111130127 ADSCrossRefGoogle Scholar
  68. 68.
    S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route. J. Electromagn. Anal. Appl. 02(06), 376–381 (2010).  https://doi.org/10.4236/jemaa.2010.26049 ADSCrossRefGoogle Scholar
  69. 69.
    R.K. Singh et al., Dependence of magnetic and structural properties of Ni0.5M0.5Fe2O4 (M = Co, Cu) nanoparticles synthesized by citrate precursor method on annealing temperature. Int. J. Eng. Sci. Technol. 2, 73–79 (2010)Google Scholar
  70. 70.
    N.K. Thanh, T.T. Loan, L.N. Anh, N.P. Duong, S. Soontaranon, N. Thammajak, T.D. Hien, Cation distribution in CuFe2O4 nanoparticles: effects of Ni doping on magnetic properties. J. Appl. Phys. 120(14), 142115 (2016).  https://doi.org/10.1063/1.4961722 ADSCrossRefGoogle Scholar
  71. 71.
    A.M. Elshahawy, S.A. Makhlouf, Magnetization studies of Ni-Cu ferrite nanoparticles synthesized by the microwave-combustion method. J. Japan Soc. Powder Powder Metall. 61(S1), S218–S220 (2014)CrossRefGoogle Scholar
  72. 72.
    S. Anjum, A. Rashid, F. Bashir, M. Pervaiz, R. Zia, Effect of Cu doped nickel ferrites on structural, magnetic and dielectric properties. Mater. Today 2(10), 5559–5567 (2015).  https://doi.org/10.1016/j.matpr.2015.11.086 CrossRefGoogle Scholar
  73. 73.
    S. Jesudoss, J.J. Vijaya, L.J. Kennedy, P.I. Rajan, H.A. Al-Lohedan, R.J. Ramalingam, M. Bououdina, Studies on the efficient dual performance of Mn1−xNixFe2O4 spinel nanoparticles in photodegradation and antimicrobial activity. J. Photochem. Photobiol. B 165, 121–132 (2016).  https://doi.org/10.1016/j.jphotobiol.2016.10.004 CrossRefGoogle Scholar
  74. 74.
    Z. Emami-Karvani, Antimicrobial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 5(18), 1368–1373 (2012).  https://doi.org/10.5897/ajmr10.159 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations