Advertisement

Applied Physics A

, 125:309 | Cite as

The structural and third-order nonlinear optical studies of a novel nitro group-substituted chalcone derivative for nonlinear optical applications

  • Haleshappa DavanagereEmail author
  • Jayarama A
  • Parutagouda Shankar Gouda Patil
  • Shivaraj R. Maidur
  • Ching Kheng Quah
  • Huey Chong Kwong
Article
  • 30 Downloads

Abstract

A novel optically high-transparent chalcone derivative (E)-3-(3-nitrophenyl)-1-(thiophene-2-yl)prop-2-en-1-one (2AT3N) has been synthesized and crystallized using slow evaporation solution method. The grown single crystals were characterized by FT-IR and FT-RAMAN vibrational technique. The spectroscopic investigations confirmed the presence of various functional groups in the grown single crystals. The single crystal X-ray diffraction analysis revealed that the harvested single crystals possess triclinic crystal structure under centrosymmetric space group P-1. In addition, the intermolecular interactions in the molecule were figured out by Hirshfeld surface analysis. The 2AT3N crystal possesses high optical transmittance beyond cutoff wavelength (358 nm) in the entire visible region. The thermal stability of the crystals has been examined by TG/DTA/DSC measurements. The 2AT3N crystals are thermally stable up to 148.3 °C. The third-order nonlinear optical properties have been studied using Z-scan experiment (532 nm and 200 mW). The Z-scan Experimental results reveal that the 2AT3N single crystals show high-order nonlinear absorption coefficient (β ~ 10−5cm W−1) and nonlinear refractive index (n2 ~ 10−9 cm2 W−1). The optical limiting study on 2AT3N was carried out using open aperture Z-scan data. The grown single crystals possess reverse saturation absorption (RSA) due to excited state absorption. The structural and nonlinear optical property relationship of the molecule along with the role of nitro group substitution in the enhancement of nonlinear optical property has been discussed in detail. Nonlinear optical studies show that, the synthesized novel chalcone derivative is an advisable material for nonlinear optical applications such as optical limiter and optical switches.

Notes

Acknowledgements

The authors are grateful to Dr. R. G. D’Souza, Principal YIT Moodbidri-India for encouragement to carry out the study; the authors would like to thank DST PURSE Mangalore University and SAIF IIT Madras for providing experimental facilities.

References

  1. 1.
    T. Schneider, Nonlinear optics in telecommunications (Springer Science & Business Media, New York, 2013)Google Scholar
  2. 2.
    A. Newell, Nonlinear optics (CRC Press, Boca Raton, 2018)zbMATHGoogle Scholar
  3. 3.
    L.R. Dalton, P. Günter, M. Jazbinsek, P.A. Sullivan, O.P. Kwon, Organic electro-optics and photonics: molecules, polymers, and crystals (Cambridge University Press, Cambridge, 2015)CrossRefGoogle Scholar
  4. 4.
    F. Article, J. Mater. Chem. C 1, 5439–5449 (2013)Google Scholar
  5. 5.
    A. Praveen, A. Jayarama, S. Weng, Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals. J. Mol. Struct. 1088, 85–94 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    A.J. Kiran, H.C. Kim, K. Kim, F. Rotermund, H.J. Ravindra, S.M. Dharmaprakash, H. Lim, Appl. Phys. Lett. 92, 113307 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Praveen, A. Jayarama, S. Weng, Synthesis, crystal growth and characterization of a D–π–A type novel organic nonlinear optical single crystal. J. Crystal Growth 402, 130–137 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    K. Naseema, K.B. Manjunatha, K.V. Sujith, G. Umesh, B. Kalluraya, V. Rao, Third order optical nonlinearity and optical limiting studies of propane hydrazides. Opt. Mater. (Amst.) 34(11), 1751–1757 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A. Ekbote, P.S. Patil, S.R. Maidur, T. Shyang, Dyes and Pigments Structural, third-order optical nonlinearities and fi gures of merit of under CW regime: new chalcone derivatives for optical limiting applications. Dye. Pigment. 139, 720–729 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Naseema, V. Rao, K.V. Sujith, K.V. Kalluraya, Curr. Appl. Phys. 10, 1236–1241 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Zhang, M. Lin, D. Xu, D. Yuan, J. Mater. Sci. Lett. 14, 1255–1257 (2000)CrossRefGoogle Scholar
  12. 12.
    T.C. Shekhara et al., Optical nonlinearity of D-A-p-D and D-A-p-A type of new chalcones for potential applications in optical limiting and density functional theory studies. J. Mol. Struct. 1143, 306–317 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S. Muhammad, A.G. Al-Sehemi, M. Pannipara, A. Irfan, Design, characterization and nonlinear optical properties of coumarin appended chalcones: use of a dual approach. Optik (Stuttg) 164, 5–15 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    M. Shkir et al., An investigation on the key features of a D–π–A type novel chalcone derivative for opto-electronic applications. RSC Adv 5(106):87320–87332 (2015)CrossRefGoogle Scholar
  15. 15.
    V. Crasta, V. Ravindrachary, S. Lakshmi, S.N. Pramod, M.A. Sridhar, J. Shashidhara, J. Cryst. Growth 275, 329 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Kiran, H.W. Lee, H.J. Ravindra, S.M. Dharmaprakash, K. Kim, H. Lim, F. Rotermund, Curr. Appl. Phys. 10, 1290–1296 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    S. Muhammad, S. Kumar, J. Koh, K. Ayub, M. Chaudhary, Synthesis, characterisation, optical and nonlinear optical properties of thiazole and benzothiazole derivatives: a dual approach. Mol. Simul. 7022, 1–9 (2018)Google Scholar
  18. 18.
    A. Ekbote, P.S. Patil, S.R. Maidur, T.S. Chia, C.K. Quah, Structure and nonlinear optical properties of (E)-1-(4-aminophenyl)-3-(3-chlorophenyl) prop-2-en-1-one: a promising new D–π–A–π–D type chalcone derivative crystal for nonlinear optical devices. J. Mol. Struct. 1129, 239–247 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    P.J. Tejkiran, M.B. Teja, P.S. Kumar, P. Sankar, R. Philip, S. Naveen, N.K. Lokanath, G.N. Rao, J. Photochem. Photobiol. 324, 33–39 (2016)CrossRefGoogle Scholar
  20. 20.
    A.N. Prabhu, A. Jayarama, K.S. Bhat, V. Upadhyaya, Growth, characterization and structural investigation of a novel nonlinear optical crystal. J. Mol. Struct. 1031, 79–84 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Anandan, S. Manoharan, N.K.S. Narendran, T.C.S. Girisun, A.M. Asiri, Donor-acceptor substituted thiophene dyes for enhanced nonlinear optical limiting. Opt. Mater. (Amst) 85(June), 18–25 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    D. Haleshappa, A. Jayarama, R. Bairy, S. Acharya, P.S. Patil, Second and third order nonlinear optical studies of a novel thiophene substituted chalcone derivative. Phys. B Condens. Matter 555, 125–132 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    S. Muhammad, A.G. Al-Sehemi, Z. Su, H. Xu, A. Irfan, A.R. Chaudhry, First principles study for the key electronic, optical and nonlinear optical properties of novel donor–acceptor chalcones. J. Mol. Graph. Model. 72, 58–69 (2017)CrossRefGoogle Scholar
  24. 24.
    I. Sakalli, E. Knapp, pK A in proteins solving the Poisson–Boltzmann equation with finite elements. J. Comput. Chem. 36, 2147–2157 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Muhammad, A.G. Al-Sehemi, A. Irfan, A.R. Chaudhry, Tuning the push–pull configuration for efficient second-order nonlinear optical properties in some chalcone derivatives. J. Mol. Graph. Model. 68, 95–105 (2016)CrossRefGoogle Scholar
  26. 26.
    S.R. Prabhu, A. Jayarama, V. Upadhyaya, K.S. Bhat, S.W. Ng, Structure and characterization of a novel chalcone crystal having nitro as an acceptor group. Mol. Crystals Liquid Crystals. 607(1), 200–214 (2015)CrossRefGoogle Scholar
  27. 27.
    P.S. Patil et al., Key functions analysis of a novel nonlinear optical D–π–A bridge type (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one chalcone: an experimental and theoretical approach. Opt. Mater. (Amst) 72, 427–435 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D.N. Dhar, The chemistry of chalcones and related compounds (Wiley, New York, 1981)Google Scholar
  29. 29.
    J.C. Brice, Crystal growth from solution (North-Holland, Amsterdam, 1973)Google Scholar
  30. 30.
    B. Zhao, W.Q. Lu, Z.H. Zhou, Y. Wu, J. Mater. Chem. 10, 1513–1517 (2000)CrossRefGoogle Scholar
  31. 31.
    H.J. Ravindra, A.J. Kiran, R.N. Satheesh, S.M. Dharmaprakash, K. Chandrashekaran, K. Balakrishna, F. Rotermund, J. Cryst. Growth 310, 4169–4176 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Ravindra, K. Chandrashekaran, W.T.A. Harrison, S.M. Dharmaprakash, Appl. Phys. B 94, 503–511 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    H.R. Manjunath et al., Growth, characterization, crystal and molecular structure studies of 1-(2′-thiophen)-3-(2, 3, 5-trichlorophenyl)-2-propen-1-one. J. Cryst. Growth 327(1), 161–166 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    H.H. Szmant, A.J. Basso, The absorption spectra of substituted chalcones. J. Am. Chem. Soc. 74(17), 4397–4400 (1952).  https://doi.org/10.1021/ja01137a047 CrossRefGoogle Scholar
  35. 35.
    J. Tauc, R. Grigorovici, A. Vance, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627–637 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    Bruker. APEX2, SAINT and SADABS. Madison, Wisconsin, USA: Bruker AXS Inc. (2014)Google Scholar
  37. 37.
    G.M. Sheldrick, A short history of SHELX. Acta Cryst A64, 112–122 (2008)CrossRefGoogle Scholar
  38. 38.
    G. Sheldrick, ActaCryst 2015(C71), 3–8 (2015)Google Scholar
  39. 39.
    M.A. Spackman, J.J. McKinnon, D. Jayatilaka, CrystEngComm. 10, 377–388 (2008)Google Scholar
  40. 40.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)ADSCrossRefGoogle Scholar
  41. 41.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    P.S. Patil, S.R. Maidur, S.V. Rao, S.M. Dharmaprakash, Optic Laser. Technol. 81, 70–76 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    L.W. Tutt, T.F. Boggess, Prog. Quant. Electron. 17, 299–338 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    J. He, W. Ji, G.H. Ma, S.H. Tang, E.S.W. Kong, S.Y. Chow, X.H. Zhang, Z.L. Hua, J.L. Shi, J. Phys. Chem. B 109, 4373–4376 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsYenepoya Institute of TechnologyMoodbidriIndia
  2. 2.Department of PhysicsAlva’s Institute of Engineering and TechnologyMoodbidriIndia
  3. 3.Department of PG PhysicsAlva’s CollegeMoodbidriIndia
  4. 4.Department of PhysicsKLE Institute of Technology, Opposite AirportGokulIndia
  5. 5.X-ray Crystallography Unit, School of PhysicsUniversiti Sains MalaysiaPenangMalaysia
  6. 6.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations