Advertisement

Applied Physics A

, 125:328 | Cite as

Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices

  • Krutika L. Routray
  • Sunirmal Saha
  • Dhrubananda BeheraEmail author
Article
  • 27 Downloads

Abstract

Influence of Fe substitutions by rare-earth (La3+) ions on structural, electric, dielectric and magnetic properties of cobalt ferrite employing glycine nitrate method is investigated. The FTIR spectra and Mossbauer spectroscopy measurements illustrate spinel phase formation of CoFe2−xLaxO4 nanoferrites supporting structural analysis from X-ray diffraction patterns. Magnetic analysis revealed that with increasing La concentration to 0.1, the coercivity and squareness values increased from 1958 to 3312 Oe, and 0.52–0.57, respectively. To obtain accuracy in the saturation magnetization values, a theoretical approach was used considering the ferromagnetic (FM) and antiferromagnetic/paramagnetic (AFM/PM) components. Dielectric measurements studied in the range of 100 Hz–1 MHz frequency from room temperature to 300 °C indicated enhanced dielectric constant with low loss on increasing La3+ concentration. The ferrite nanoparticles with improved magnetic and dielectric properties make these materials suitable for magneto-recording and high-frequency devices.

Notes

Acknowledgements

Ms. Krutika L. Routray acknowledges Department of Science & Technology, India, for fellowship Grants under INSPIRE scheme with sanction number DST/INSPIRE Fellowship/2014/IF140812 during her research work. Magnetisation study has been supported by VSM, DST, India, project code “EMR/2014/000341. We would like to acknowledge Dr. Dirtha Sanyal, VECC, Kolkata, for Mossbauer spectroscopy measurements.

References

  1. 1.
    G. Bate, J. Magn. Magn. Mater. 100(1–3), 413 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113(20), 8606 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Hu, J.H. Choi, C.B. Eom, V.G. Harris, Y. Suzuki, Phys. Rev. B Condens. Matter Mater. Phys. 62(2), R779 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308(2), 289 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122(26), 6263 (2000)CrossRefGoogle Scholar
  6. 6.
    C. Murugesan, M. Perumal, G. Chandrasekaran, Phys. B 448, 53 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B.G. Toksha, S.E. Shirsath, M.L. Mane, K.M. Jadhav, Ceram. Int. 43(16), 14347 (2017)CrossRefGoogle Scholar
  8. 8.
    D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19(1), 210 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Anjum, F. Sehar, M.S. Awan, R. Zia, Appl. Phys. A 122(4), 436 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    F. Falsafi, B. Hashemi, A. Mirzaei, E. Fazio, F. Neri, N. Donato, S.G. Leonardi, G. Neri, Ceram. Int. 43(1), 1029 (2017)CrossRefGoogle Scholar
  11. 11.
    X. Meng, H. Li, J. Chen, L. Mei, K. Wang, X. Li, J. Magn. Magn. Mater. 321(9), 1155 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Z.M. Lu, Z.W. Li, J. Shen, F.B. Meng, H.Y. Liu, Y.X. Li, C.Y. Li, J. Appl. Phys. 105(7), 07A519 (2009)CrossRefGoogle Scholar
  13. 13.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, RSC Adv. 5(3), 2338–2345 (2015)CrossRefGoogle Scholar
  14. 14.
    K.L. Routray, D. Sanyal, D. Behera, J. Appl. Phys. 122(22), 224104 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    K.L. Routray, D. Behera, J. Mater. Sci. Mater. El. 29(16), 14248 (2018)CrossRefGoogle Scholar
  16. 16.
    S.E. Jacobo, S.D. Uhalde, H.R. Bertorello, J. Magn. Magn. Mater. 272, 2253 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323(1), 133 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Imine, F. Schoenstein, S. Mercone, M. Zaghrioui, N. Bettahar, N. Jouini, J. Eur. Ceram. Soc. 31(15), 2943 (2011)CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, C.K. Kim, S. Katoh, R. Murakami, J. Alloys Compd 325, 276 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, Y.M. Yang, L.C. Li, Phys. B 399, 105 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Verma, T.C. Goel, R.G. Mendiratta, M.I. Alam, Mater. Sci. Eng., B 60, 156 (1999)CrossRefGoogle Scholar
  22. 22.
    A. Sutka, G. Mezinskis, Front. Mater. Sci. 6(2), 128 (2012)CrossRefGoogle Scholar
  23. 23.
    A.L. Patterson, Phys. Rev. 56(10), 978 (1939)ADSCrossRefGoogle Scholar
  24. 24.
    Y.I. Kim, D. Kim, C.S. Lee, Phys. B 337(1–4), 42 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1958)CrossRefGoogle Scholar
  26. 26.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci. Mater. El. 21(4), 343 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Hafner, Ordnung/unordnung und ultrarotabsorption IV. Cryst. Mater. 115(1–6), 331 (1961)Google Scholar
  28. 28.
    R.D. Waldron, Phys. Rev. 99, 1727 (1955)ADSCrossRefGoogle Scholar
  29. 29.
    J. Azadmanjiri, Mater. Chem. Phys. 109, 109 (2008)CrossRefGoogle Scholar
  30. 30.
    M.L. Kahn, Z. John, Z. Zhang, Appl. Phys. Lett. 78, 3651 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    L. Kumar, M. Kar, Ceram. Int. 38(6), 4771 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Vadivel, R.R. Babu, P. Selvakumar, M. Arivanandhan, K. Ramamurthi, Recent Trends in Materials Science and Applications (Springer, Cham, 2017), p. 179CrossRefGoogle Scholar
  33. 33.
    X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Chem. Eng. J. 250, 164 (2014)CrossRefGoogle Scholar
  34. 34.
    R.H. Kodama, J. Magn. Magn. Mater. 200(1–3), 359 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    J.H. Rodriguez, H.N. Ok, Y.M. Xia, P.G. Debrunner, B.E. Hinrichs, T. Meyer, N.H. Packard, J. Phys. Chem. 100(16), 6849 (1996)CrossRefGoogle Scholar
  36. 36.
    G. Datt, M.S. Bishwas, M.M. Raja, A.C. Abhyankar, Nanoscale 8(9), 5200 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    C.G. Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  38. 38.
    S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Phys. B 405(12), 2610 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S. Amiri, H. Shokrollahi, J. Magn. Magn. Mater. 345, 18 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J.C. Maxwell, 1, 828 (1973)Google Scholar
  41. 41.
    R.K. Panda, D. Behera, J. Alloy. Comp. 587, 481 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Chakrabarty, A. Dutta, M. Pal, Electrochim. Acta 184, 70 (2015)CrossRefGoogle Scholar
  43. 43.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  44. 44.
    J.S. Kim, I.W. Kim, C.W. Ahn, T.K. Song, S.S. Kim, S.X. Chi, J.S. Bae, J.H. Jeong, Jpn. J. Appl. Phys. 41, 6785 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    M.A. Rahman, A.A. Hossain, Phys. Scr. 89, 025803 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)CrossRefGoogle Scholar
  47. 47.
    N. Chihaoui, R. Dhahri, M. Bejar, E. Dharhi, L.C. Costa, M.P.F. Graça, Solid State Commun. 151(19), 1331 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    M. Ganguli, M.H. Bhat, K.J. Raol, Phys. Chem. Glasses 40(6), 297 (1999)Google Scholar
  49. 49.
    S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146(3–4), 329 (2002)CrossRefGoogle Scholar
  50. 50.
    K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)CrossRefGoogle Scholar
  51. 51.
    A. Dutta, T.P. Sinha, J. Phys. Chem. Solids 67, 1484 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    S.T. Assar, H.F. Abosheiasha, M.K. El Nimr, J. Magn. Magn. Mater. 350, 12 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    S.R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S.D. Kaushik, S. Rath, A.K. Singh, Ceram. Int. 42, 12352 (2016)CrossRefGoogle Scholar
  54. 54.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Ceram. Int. 42, 12914 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia
  2. 2.C.V. Raman College of EngineeringBhubaneswarIndia

Personalised recommendations