Advertisement

Applied Physics A

, 125:314 | Cite as

Evidence of magnetism in electrospun PbFe12O19 nanofibers

  • S. Prathap
  • W. MadhuriEmail author
Article
  • 19 Downloads

Abstract

One-dimensional lead hexaferrite (PbFe12O19) nanofibers are produced using electrospinning technology combined with sol–gel followed by muffle furnace heating. PVP/DMF is used as reductant to form precursor solution for lead hexaferrite nanofiber. Polycrystalline nanofibers with an average diameter of 145 nm have been prepared by electrospinning method. The structural features of the sintered nanofibers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and EDX. The obtained PbFe12O19 nanofibers showed a hexagonal structure after sintering. The SEM image clearly shows the fibrous morphology of PbFe12O19. Vibrating sample magnetometer (VSM) revealed very low coercivity and fairly high saturation magnetization. The fiber exhibited a ferromagnetic behaviour at room temperature, which is attributed to the nanometre-size of PbFe12O19 nanofibers.

Notes

Acknowledgements

This work was financially supported by Rajiv Gandhi National Fellowship Grant number RGNF-2014-15-SC-TAM-64671, UGC New Delhi. Authors are thankful to Dr. A. Nirmala Grace, Director, centre for nanotechnology, VIT, Vellore for providing electrospinning facility. Authors also acknowledge SIF at SAS, VIT, and Vellore for XRD, FT-IR, and TG–DTA facility and Central University Hyderabad for providing VSM facilities, respectively.

References

  1. 1.
    R.C. Pullar, A.K. Bhattacharya, Polycrystalline yttrium aluminium garnet YAG fibres produced from the steaming of an aqueous sol–gel precursor. Mater. Lett. 39, 173–178 (1999)CrossRefGoogle Scholar
  2. 2.
    J. Liu, C. Gong, G. Fan, Preparation and properties of barium–ferrite-containing glass ceramic fibers via an electrospinning/sol–gel process. J. Sol Gel Sci. Technol. 61, 185–191 (2012)CrossRefGoogle Scholar
  3. 3.
    C.-J. Li, B.-N. Huang, J.-N. Wang, Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers. J. Mater. Sci. 48, 1702–1710 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Liang, X. Shen, F. Song, M. Liu, Fabrication and magnetic property of one-dimensional SrTiO3/SrFe12O19 composite nanofibers by electrospinning. J. Mater. Sci. Technol. 27(11), 996–1000 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Yang, H. Yang, J. Jia, X. Pang, Formation and magnetic properties of nanosized PbFe12O19 particles synthesized by citrate precursor technique. J. Alloy. Compd. 438, 263–267 (2007)CrossRefGoogle Scholar
  6. 6.
    S.E. Mousavi Ghahfarokhi, Z.A. Rostami, I. Kazeminezhad, Fabrication of PbFe12O19 nanoparticles and study of their structural, magnetic and dielectric properties. J. Magn. Magn. Mater. 399, 130–142 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    S. Prathap, W. Madhuri, Multiferroic properties of microwave sintered iron deficient PbFe12-xO19-δ (x = 0–1). J. Magn. Magn. Mater. 430, 114–122 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wang, L. Zhao, P. Wang, Yu. Lei Guo Jianhua, Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning. J. Alloy. Compd. 687, 541–547 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: sol–gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140–148 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Pieper, A. Morel, F. Kools, NMR analysis of La + Co doped M-type ferrites. J. Magn. Magn. Mater. 242, 1408–1410 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    X. Jing, X. Shen, H. Song, F. Song, Magnetic and dielectric properties of barium ferrite fibers/poly(vinylidene fluoride) composite films. J. Polym. Res. 18, 2017–2021 (2011)CrossRefGoogle Scholar
  12. 12.
    C.-J. Li, J.-N. Wang, Electrospun SrRe0.6Fe11.4O19 magnetic nanofibers: fabrication and characterization. Mater Lett 64, 586–588 (2010)CrossRefGoogle Scholar
  13. 13.
    C.-J. Li, B. Wang, J.-N. Wang, Magnetic and microwave absorbing properties of electrospun Ba1-xLaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324, 1305–1311 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Liu, X. Shen, F. Song, J. Xiang, X. Meng, One-dimensional SrFe12O19/SrSiO3 composite nanofibers: preparation, structure and magnetic properties. Mater. Chem. Phys. 124, 970–975 (2010)CrossRefGoogle Scholar
  15. 15.
    R.C. Pullar, M.D. Taylor, A.K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres. J. Eur. Ceram. Soc. 22, 2039–2045 (2002)CrossRefGoogle Scholar
  16. 16.
    A.L. Guerrero-Serrano, M. Mirabal-García, S.A. Palomares-Sánchez, J.R. Martinez-Mendoza, Study of the magnetic properties of the Pb-hexaferrite obtained as a single phase by two methods of preparation. Rev. LatinAm. Metal. Mat. 34(1), 136–141 (2014)Google Scholar
  17. 17.
    G.R. Gordani, M. Mohseni, A. Ghasemi, S.R. Hosseini, Microstructure, magnetic and microwave absorptive behavior of doped W-type hexaferrite nanoparticles prepared by co-precipitation method. Mater. Res. Bull. 76, 187–194 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Halakouie, G. Nabiyouni, J. Saffari, A. Ahmadi, D. Ghanbari, Lead hexa-ferrites and magnetic cellulose acetate nanocomposites: study of magnetization, coercivity and remanence. J. Mater. Sci.: Mater. Electron. 27, 7738–7749 (2016)Google Scholar
  19. 19.
    K. Chandra Babu Naidu, S. RoopasKiran, W. Madhuri, Investigations on transport, impedance and electromagnetic interference shielding properties of microwave processed NiMg ferrites. Mater. Res. Bull. 89, 125–138 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Chandra Babu Naidu, W. Madhuri, Microwave processed NiMg ferrite: studies on structural and magnetic properties. J. Magn. Magn. Mater. 420, 109–116 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    G.-L. Tan, M. Wang, Multiferroic PbFe12O19. J. Electro Ceram. 26, 170–174 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ceramic Composite Laboratory, Centre for Crystal GrowthVITVelloreIndia

Personalised recommendations