Advertisement

Applied Physics A

, 125:297 | Cite as

The structural relaxation study of Zr–Cu–Ni–Al metallic glass during heating by small-angle X-ray scattering

  • Yi Liu
  • Jie Pan
  • Li LiEmail author
  • Honghui ChengEmail author
Article
  • 58 Downloads

Abstract

Zr65Cu17.5Ni10Al7.5 and Zr69.5Cu12Ni11Al7.5 alloys exhibit different crystallization features during heating. Zr65Cu17.5Ni10Al7.5 alloy undergoes one-step crystallization with formation of compounds of Zr2Cu and Zr2Ni, while Zr69.5Cu12Ni11Al7.5 alloy follows two-step crystallization with a preferential formation of quasi crystalline mesophase. In situ small-angle X-ray scattering was employed to investigate the structural relaxation of the both BMGs. The obtained results show that there is homogenization of density fluctuation in the transition from CSRO to TSRO in the process of isothermal annealing, and that the transition holding time decreases with increase of the annealing temperature, and that Zr69.5Cu12Ni11Al7.5 alloy has longer density fluctuation rising time and longer transition holding time than those Zr65Cu17,5Ni10Al7.5 alloy has.

Notes

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2016YFB0700401).

References

  1. 1.
    A.L. Greer, E. Ma, Bulk metallic glasses: at the cutting edge of metals research. MRS Bull. 32, 611–619 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Li, J.J. Zhang, W. Xing, D. Ouyang, L. Liu, 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 143, 285–296 (2018)CrossRefGoogle Scholar
  3. 3.
    N.K. Maroju, D.P. Yun, B.Y. Xie, X.L. Jin, Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass. J. Manuf. Process. 35, 40–50 (2018)CrossRefGoogle Scholar
  4. 4.
    M.D. Demetriou, A. Wiest, D.C. Hofmann, W.A. Johnson, B. Han, N. Wolfson, G. Wang, P.K. Liaw, Amorphous metal for hard-tissue prosthesis. JOM 62, 83–91 (2010)CrossRefGoogle Scholar
  5. 5.
    H.S. Chen, Thermal and mechanical stability of metallic glass ferromagnets. Scr. Metall. 11, 367–370 (1977)CrossRefGoogle Scholar
  6. 6.
    J. Piller, P. Haasen, Atom probe field ion microscopy of a FeNiB glass. Acta Metall. 30, 1–8 (1982)CrossRefGoogle Scholar
  7. 7.
    T.W. Wu, F. Spaepen, Small angle X-ray scattering from an embrittling metallic glass. Acta Metall. 33, 2185–2190 (1985)CrossRefGoogle Scholar
  8. 8.
    R. GerlingR, F.P. Schimansky, R. WagnerR, Two-stage embrittlement of amorphous Fe40Ni40P20 resulting from a loss of free volume and phase separation. Acta Metall. 36, 575–583 (1988)CrossRefGoogle Scholar
  9. 9.
    Y. Yokoyama, T.Y. Yamasaki, P.K. Liaw, A. Inoue, Study of the structural relaxation-induced embrittlement of hypoeutectic Zr–Cu–Al ternary bulk glassy alloys. Acta Mater. 56, 6097–6108 (2008)CrossRefGoogle Scholar
  10. 10.
    M.T.A. Khanouki, R. Tavakoli, H. Aashuri, On the origin of intermediate temperature brittleness in La-based bulk metallic glasses. J. Alloy. Compd. 770, 535–539 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Hirata, N. Kawahara, Y. Hirotsu, A. Makino, Local structure change on annealing in an Fe–Si–P–B bulk metallic glass. Intermetallics 17, 186–189 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Zheng, G. Wang, L.C. Zhang, M. Calin, M. Stoica, G. Vaughan, N. Mattern, J. Eckert, In situ high-energy X-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating. J. Mater. Res. 25, 2271–2277 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Wei, M. Stolpe, O. Gross, Z. Evenson, I. Gallino, W. Hembree, J. Bednarcick, J.J. Kruzic, R. Busch, Linking structure to fragility in bulk metallic glass-forming liquids. Appl. Phys. Lett. 106, 181901(1)–181901(5) (2015)ADSGoogle Scholar
  14. 14.
    H.S. Chen, On mechanisms of structural relaxation in a Pd48Ni32P20 glass. J. Non Cryst. Solids 46, 289–305 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa, Y. Yokoyama, Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass. Acta Mater. 58, 1829–1836 (2010)CrossRefGoogle Scholar
  16. 16.
    Z. Evenson, I. Gallino, R. Busch, The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J. Appl. Phys. 107, 123529(1)–123529(7) (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Qiao, J.M. Pelletier, Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC). Intermetallics 19, 9–18 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Frey, R. Busch, W. Possart, I. Gallino, On the thermodynamics, kinetics, and sub-T g relaxations of Mg-based bulk metallic glasses. Acta Mater. 155, 117–127 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, H. Hahn, Study of kinetics of free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk glasses during isothermal relaxation by enthalpy relaxation experiments. J. Non Cryst. Solids. 355, 2616–2621 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Egami, V.A. Levashov, J.R. Morris, O. Haruyama, Statistical mechanics of metallic glasses and liquids. Metall. Mater. Trans. A 41, 1628–1633 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Saida, R. Yamada, M. Wakeda, Recovery of less relaxed state in Zr–Al–Ni–Cu bulk metallic glasses annealed above glass transition temperature. Appl. Phys. Lett. 103, 221910(1)–221910(4) (2013)ADSCrossRefGoogle Scholar
  22. 22.
    D.P.B. Aji, G.P. Johari, Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass. J. Chem. Phys. 148, 144506(1)–144506(9) (2018)ADSCrossRefGoogle Scholar
  23. 23.
    O. Glatter, O. Kratky, Small Angle X-ray Scattering (Academic Press, London, 1982)Google Scholar
  24. 24.
    U. Köster, J. Meinhardt, S. Roos, R. Busch, Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys. Mater. Sci. Eng. A 226–228, 995–998 (1997)CrossRefGoogle Scholar
  25. 25.
    X.J. Liu, G.L. Chen, X. Hui, T. Liu, Z.P. Lu, Ordered clusters and free volume in a Zr–Ni metallic glass. Appl. Phys. Lett. 93, 011911(1)–011911(3) (2008)ADSGoogle Scholar
  26. 26.
    L. Zhang, Y.Q. Cheng, A.J. Cao, J. Xu, E. Ma, Bulk metallic glasses with large plasticity: composition design from the structural perspective. Acta Mater. 57, 1154–1164 (2009)CrossRefGoogle Scholar
  27. 27.
    D.P.B. Aji, G.P. Johari, Enthalpy and entropy changes on structural relaxation of Mg65Cu25Tb10 glass. Thermochim. Acta. 503–504, 121–131 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Van den Beukel, S. Radelaar, On the kinetics of structural relaxation in metallic glasses. Acta. Metall. 31, 419–427 (1983)CrossRefGoogle Scholar
  29. 29.
    D.C. Tian, F. Fouquet, F. Guyot, C. Mai, J. Perez, A study of the kinetics of crystallization of an amorphous metallic glass Fe83B14Si1.5C1.5 using thermoelectric power measurements. Mater. Sci. Eng. 53, 179–184 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.College of Mechanical EngineeringYangzhou UniversityYangzhouChina

Personalised recommendations