Advertisement

Applied Physics A

, 125:294 | Cite as

Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs

  • H. Bencherif
  • L. Dehimi
  • F. PezzimentiEmail author
  • F. G. Della Corte
Article
  • 20 Downloads

Abstract

The temperature and carrier-trapping effects on the electrical characteristics of a 4H silicon carbide (4H-SiC) metal–oxide–semiconductor field effect transistor (MOSFET) dimensioned for a low breakdown voltage (BVDS) are investigated. Firstly, the impact of the temperature is evaluated referring to a fresh device (defects-free). In particular, the threshold voltage (Vth), channel mobility (µch), and on-state resistance (RON) are calculated in the temperature range of 300 K to 500 K starting from the device current–voltage characteristics. A defective MOSFET is then considered. A combined model of defect energy levels inside the 4H-SiC bandgap (deep and tail centers) and oxide-fixed traps is taken into account referring to literature data. The simulation results show that the SiO2/4H-SiC interface traps act to increase RON, reduce µch, and increase the sensitivity of Vth with temperature. In more detail, the deep-level traps in the mid-gap have a limited effect in determining RON once the tail traps contributions have been introduced. Also, for gate biases greater than about 2Vth (i.e., VGS > 12 V) the increase of mobile carriers in the inversion layer leads to an increased screening of traps which enhances the MOSFET output current limiting the RON increase in particular at low temperatures. Finally, a high oxide-fixed trap density meaningfully influences Vth (negative shifting) and penalizes the device drain current over the whole explored voltage range.

Notes

References

  1. 1.
    B.J. Baliga, Silicon carbide power devices (World Scientific, Singapore, 2005)Google Scholar
  2. 2.
    ROHM Model SCT2H12NZ (1700V), http://www.rohm.com/web/eu/products/-/product/SCT2H12NZ. Accessed 10 Jan 2019
  3. 3.
    CREE Model C3M0280090D (900V), http://www.wolfspeed.com/c3m0280090d. Accessed 10 Jan 2019
  4. 4.
    ROHM Model SCT3017AL (650V) http://www.rohm.com/web/eu/products/-/product/SCT3017AL. Accessed 10 Jan 2019
  5. 5.
    F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, G. Graditi, IEEE Trans. Electron Dev 65, 3352–3360 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    G. De Martino, F. Pezzimenti, F. G. Della Corte, G. Adinolfi, G. Graditi, in Proceedings of the IEEE International Conference on Ph. D. Research in Microelectronics and Electronics—PRIME, pp. 221–224 (2017)Google Scholar
  7. 7.
    O. Khan, W. Xiao, M. Shawky El Moursi, I.E.E.E. Trans, Power Electron. 32, 3278–3284 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Zhou, J. Zhao, Y. Han, I.E.E.E. Trans, Power Electron. 30, 3479–3487 (2015)CrossRefGoogle Scholar
  9. 9.
    G. De Martino, F. Pezzimenti, F. G. Della Corte, in Proceedings of the International Semiconductor Conference—CAS, pp. 147–150 (2018)Google Scholar
  10. 10.
    Y. Shi, R. Li, Y. Xue, H. Li, I.E.E.E. Trans, Power Electron. 31, 328–339 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Tachiki, T. Ono, T. Kobayashi, H. Tanaka, I.E.E.E. Trans, Electron Dev. 65, 3077–3080 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    D.P. Ettisserry, N. Goldsman, A. Lelis, J. Appl. Phys. 115, 103706 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, W.J. Choyke, Phys. Rev. 72, 115323 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Tanimoto, A. Saito, K. Matsuura, H. Kikuchihara, H.J. Mattausch, M. Miura-Mattausch, N. Kawamoto, I.E.E.E. Trans, Power Electron. 31, 4509–4516 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Sung, B.J. Baliga, I.E.E.E. Electr, Device L. 37, 1605–1608 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Mikamura, K. Hiratsuka, T. Tsuno, H. Michikoshi, S. Tanaka, T. Masuda, T. Sekiguchi, I.E.E.E. Trans, Electron Dev. 62, 382–389 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Okamoto, M. Iijima, T. Nagano, K. Fukuda, H. Okumura, Mater. Sci. Forum 717, 781–784 (2012)CrossRefGoogle Scholar
  18. 18.
    Silvaco Int., Atlas user’s manual, Device Simulator Software (2016)Google Scholar
  19. 19.
    F. Pezzimenti, I.E.E.E. Trans, Electron Dev. 60, 1404–1411 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, A.H. Larbi, Superlattice. Microst. 122, 57–73 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Marouf, L. Dehimi, F. Bouzid, F. Pezzimenti, F.G. Della Corte, Optik 163, 22–32 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    F. Pezzimenti, F. G. Della Corte, in Proceedings of the Mediterranean Electrotechnical Conference—MELECON, pp. 1129–1134 (2010)Google Scholar
  24. 24.
    F. Bouzid, L. Dehimi, F. Pezzimenti, J. Electron. Mater. 46, 6563–6570 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, F.G. Della Corte, IEEE Trans. Electron Dev. 65, 3371–3378 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, F.G. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    F.G. Della Corte, F. Pezzimenti, S. Bellone, R. Nipoti, Mater. Sci. Forum. 679, 621–624 (2011)CrossRefGoogle Scholar
  28. 28.
    F. Pezzimenti, S. Bellone, F.G. Della Corte, R. Nipoti, Mater. Sci. Forum. 740, 942–945 (2013)CrossRefGoogle Scholar
  29. 29.
    F. Pezzimenti, L. F. Albanese, S. Bellone, F. G. Della Corte, in Proceedings of the IEEE international conference on bipolar/BiCMOS circuits and technology meeting, pp. 214–217 (2009)Google Scholar
  30. 30.
    M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, F.G. Della Corte, J. Electron. Mater. 47, 1414–1420 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    M. Ruff, H. Mitlehner, R. Helbig, I.E.E.E. Trans, Electron Dev. 41, 1040–1054 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    S. Dhar, S. Haney, L. Cheng, S.R. Ryu, A.K. Agarwal, J. Appl. Phys. 108, 054509 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044515 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    E.I. Dimitriadis, N. Archontas, D. Girginoudi, N. Georgoulas, Microelectron. Eng. 133, 120–128 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, M. Weiner, Solid State Electron. 47, 233–239 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    M. Roschke, F. Schwierz, I.E.E.E. Trans, Electron Dev. 48, 1442–1447 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    B.J. Baliga, Fundamentals of power semiconductor devices (Springer, New York, 2008)CrossRefGoogle Scholar
  38. 38.
    F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. 84, 235320 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Rozen, A.C. Ahyi, X. Zhu, J.R. Williams, L.C. Feldman, I.E.E.E. Trans, Electron Dev. 58, 3808–3811 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes, U. Schwalke, I.E.E.E. Electr, Device L. 24, 87–89 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Zafar, A. Callegari, E. Gusev, M.V. Fischetti, J. Appl. Phys. 93, 9298 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044516 (2006)ADSCrossRefGoogle Scholar
  43. 43.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LMSM, University of BiskraBiskraAlgeria
  2. 2.LAAAS, University Mostefa BenboulaidBatna 2Algeria
  3. 3.DIIES, Mediterranea University of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations