Advertisement

Applied Physics A

, 125:296 | Cite as

A new approach to modeling TiO2−x-based memristors using molecular dynamics simulation

  • Niloufar RajabiyounEmail author
  • Tevhit Karacalı
Article
  • 43 Downloads

Abstract

This study aims to investigate the oxygen ion migration in defect rutile titanium dioxide (TiO2−x) in the presence of oxygen and titanium vacancies using a new approach based on molecular dynamic simulation. In this approach, the force field models along with Buckingham and Columbic potentials are used. For this purpose, the simulation is conducted in two different phases. In the first phase, the effect of temperature on the mean square displacements of oxygen ions is examined; besides, the diffusion and ionic conductivity of oxygen are studied in the absence of the electrical field. The results reveal that in the temperature range of 1100–1900 K, the oxygen vacancies tend to form clusters. These clusters consist of two oxygen vacancies. In the second phase, the memristor is applied to the model and hysteresis loops are studied in five cycles. The results of the second phase show that the new model correctly predicts the migration behavior of the oxygen ions in the memristor configuration. In conclusion, compared to the models using the Langevin equation method, the proposed model provides information which is closer to reality. Furthermore, the mean square displacements of the oxygen ions versus time are studied in the presence and absence of the electrical field at 300 K, and the results indicate greater diffusion in the presence of the electrical field.

Notes

References

  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 4, 429–433 (2008)CrossRefGoogle Scholar
  3. 3.
    S.H. Lee, Y. Jung, R. Agarwal, Highly scalable non-volatile and ultra-low power phase- change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Sun, J. Zhou, R. Ahuja, Unique melting behavior in phase-change materials for rewritable data storage. Phys. Rev. Lett. 98, 055505 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart, J. Straznicky, R.S. Williams, Writing to and reading from a nano-scale crossbar memory based on memristors. Nat. Nanotechnol. 20, 425204 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, C. Chu, Field driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89, 042904 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Y.V. Pershin, M. Di Ventra, Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    D. Wang, Z. Hu, X. Yu, J. Yu, A PWL model of memristor and its application example, in IEEE Communications, Circuits and Systems, 2009. ICCCAS 2009 (2009) pp. 932–934Google Scholar
  10. 10.
    S.E. Savelev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Molecular dynamics simulations of oxide memristors: thermal effects. Appl. Phys. A Mater. 102, 891–895 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S.E. Savelev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Molecular dynamics simulations of oxide memory resistors (memristors). Nat. Nanotechnol. 22, 254011 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S.E. Savelev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Molecular dynamics simulations of oxide memristors: crystal field effects. Appl. Phys. Lett. 99, 053108s (2011)ADSCrossRefGoogle Scholar
  13. 13.
    P.Y. Simons, F. Dachille, The structure of TiO2 II, a highpressure phase of TiO2. Acta Crystallogr. 23, 334–336 (1967)CrossRefGoogle Scholar
  14. 14.
    J.C. Jamieson, B. Olinger, Pressure-temperature studies of anatase, brookite rutile, and TiO2 (II): a discussion. Am. Miner. 54, 1477–1481 (1969)Google Scholar
  15. 15.
    H. Miyaoka, G. Mizutani, H. Sano, M. Omote, K. Nakatsuji, F. Komori, Anomalous electro-migration of oxygen vacancies in reduced TiO2. Solid State Commun. 123, 399–404 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Marucco, J. Gautron, P. Lemasson, Thermogravimetric and electrical study of non-stoichiometric titanium dioxide TiO2−x, between 800 and 1100 C. J. Phys. Chem. Solids 42, 363–367 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    S. Kumar, C.E. Graves, J.P. Strachan, E.M. Grafals, A.L.D. Kilcoyne, T. Tyliszczak, R.S. Williams, Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. Res. 28, 2772–2776 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Meis, J.L. Fleche, Study of the solubility limit of oxygen vacancies in TiO2−x using molecular dynamics. Solid State Ion. 101, 333–335 (1997)Google Scholar
  19. 19.
    M. Matsui, M. Akaogi, Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol. Simulat. 6, 239–244 (1991)CrossRefGoogle Scholar
  20. 20.
    J. Nowotny, Oxide Semiconductors for Solar Energy Conversion Titanium Oxide, Chapter 4 (CRC Press, Boca Raton, 2012), p. 167Google Scholar
  21. 21.
    F.A. Kroger, The Chemistry of Imperfect Crystals (North-Holland Pub. Co, Amsterdam, 1974)Google Scholar
  22. 22.
    R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Adam Hilger, New York, 1989)zbMATHGoogle Scholar
  23. 23.
    S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 119, 1–19 (1995)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    T. Oyama, N. Wada, Y. Sakabe, Molecular dynamics study of oxygen vacancy diffusion in BaTiO3 doped with rare earth ions. Key Eng. Mater. 388, 269–272 (2009)CrossRefGoogle Scholar
  25. 25.
    E. Iguchi, K. Yajima, Diffusion of oxygen vacancies in reduced rutile (TiO2). J. Phys. Soc. Jpn. 32, 1415–1421 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    T.B. Gruenwald, G. Gordon, Oxygen diffusion in single crystals of titanium dioxide. J. Inorg. Nucl. Chem. 33, 1151–1155 (1971)CrossRefGoogle Scholar
  27. 27.
    F. Millot, C. Picard, Oxygen self-diffusion in non-stoichiometric rutile TiO2−x at high temperature. Solid State Ion. 28, 1344–1348 (1988)CrossRefGoogle Scholar
  28. 28.
    M.D. Rasmussen, L.M. Molina, B. Hammer, Adsorption, diffusion and dissociation of molecular oxygen at defected TiO2 (110): a density functional theory study. J. Chem. Phys. 120, 988–997 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    H. Araghi, S. Rezaee, Z. Zabihi, Ionic conductivity of oxygen in BaTiO3, Ba0.9A0.1TiO3Ba0.9A0.1TiO3−δ (A: Li+, Na+, Ca2+), and BaTi0.9B0.1O3−δ (B: V3+, Cr3+, Si4+) crystals with cubic perovskite structure as cathode in fuel cell: a molecular dynamics study. J Solid State Chem. 258, 640–646 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Y.A. Zulueta, J.A. Dawson, Y. Leyet, F. Guerrero, J.A. Rivera, M.T. Nguyen, Influence of titanium and oxygen vacancies on the transport and conducting properties of barium titanate. Phys. Status Solidi B 253, 345–350 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M. Schie, A. Marchewka, T. Muller, R.A. De Souza, R. Waser, Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3. J. Phys. Conf. Ser. 24(48), 485002 (2012)Google Scholar
  32. 32.
    G.G. Belmonte, J. Bisquert, P. Miranzo, Anomalous diffusion of defects in rutile–titanium dioxide: correlation between ac conductivity and defect structures. Solid State Ion. 146, 367–376 (2002)CrossRefGoogle Scholar
  33. 33.
    J. Nowotny, Oxide Semiconductors for Solar Energy Conversion (Titanium Dioxide), vol. 232 (CRC Press, Boca Raton, 2012)Google Scholar
  34. 34.
    D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of a thin-film memristors. Appl. Phys. A Mater. 94, 515–519 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    H. Efeoglu, S. Gullulu, T. Karacali, Resistive switching of reactive sputtered TiO2 based memristor in crossbar geometry. Appl. Surf. Sci. 350, 10–13 (2015)CrossRefGoogle Scholar
  36. 36.
    C. Giovinazzo, C. Ricciardi, C.F. Pirri, A. Chiolerio, S. Porro, Effects of single-pulse Al2O3 insertion in TiO2 oxide memristors by low temperature ALD. Appl. Phys. A Mater. 124, 686 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    F. Gul, H. Efeoglu, ZnO and ZnO1−x based thin film memristors: the effects of oxygen deficiency and thickness in resistive switching behavior. Ceram. Int. 43, 10770–10775 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAtaturk UniversityErzurumTurkey

Personalised recommendations