Advertisement

Applied Physics A

, 125:290 | Cite as

Hyperthermic efficacy of suitably functionalized MWCNT decorated with MnFe2O4 nanocomposite

  • Papori Seal
  • Nibedita Paul
  • P. D. Babu
  • J. P. BorahEmail author
Article
  • 23 Downloads

Abstract

We investigate the efficacy of polyethylene glycol (PEG) and amine-functionalized MWCNT decorated with MnFe2O4 nanocomposites as heating material for magnetic hyperthermia applications. Samples are prepared by a standard solvothermal method. Phase formation of MnFe2O4 has been confirmed by X-ray diffractogram and attachment of nanoparticles on the surface of functionalized MWCNT is evident from transmission electron microscopic image of nanocomposite. Fourier transform infrared spectrum of PEG-functionalized MWCNT and amine-functionalized MWCNT confirmed the presence of PEG and amine group, respectively. As desirable for stability in magnetic hyperthermia, vibration sample magnetometer study suggests superparamagnetic behaviour of all the samples at temperatures 300 K, 200 K and 100 K except at 5 K, which is below blocking temperature as confirmed by ZFC–FC curves. Estimated Curie temperature (TC) and room temperature effective anisotropy is found to increase in nanocomposites, highest for amine-functionalized MWCNT/MnFe2O4 nanocomposite. A clear correlation between effective anisotropy and heat generation capability (SAR/ILP) has been observed: higher the anisotropy, higher is the heat generation capability (SAR/ILP).

Notes

Acknowledgements

The authors acknowledge UGC-DAE-CSR Mumbai for supporting a collaborative project (no. UDCSR/MUM/CD/CSR-M-239-2017-1005) during 2017–2019. The authors would like to thank SAIF NEHU for granting access to their availed facilities.

References

  1. 1.
    R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Ann. Surg. 146, 596–606 (1957)CrossRefGoogle Scholar
  2. 2.
    S. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Donà, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, G. Chirico, Nano Lett. 13, 2004–2010 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Villanueva, P. de la Presa, J.M. Alonso, T. Rueda, A. Martínez, P. Crespo, M.P. Morales, M.A. Gonzalez-Fernandez, J. Valdés, G. Rivero, J. Phys. Chem. C 114, 1976–1981 (2010)CrossRefGoogle Scholar
  4. 4.
    I.M. Obaidat, B. Issa, Y. Haik, Nanomaterials 5, 63–89 (2015)CrossRefGoogle Scholar
  5. 5.
    M.E.F. Brollo, J.M. Orozco-Henao, R. López-Ruiz, D. Muraca, C.S.B. Dias, K.R. Pirota, M. Knobel, J. Magn. Magn. Mater. 397, 20–27 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. de Sousa, M.B. van Fernández Raap, P.C. Rivas, P. Mendoza Zélis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, F.H. Sánchez, J. Phys. Chem. C 117, 5436–5445 (2013)CrossRefGoogle Scholar
  7. 7.
    J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Nat. Med. 13, 95–99 (2006)CrossRefGoogle Scholar
  8. 8.
    D.-H. Kim, D.E. Nikles, C.S. Brazel, Materials 3, 4051–4065 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Guo, S. Dong, E. Wang, Adv. Mater. 22, 1269–1272 (2010)CrossRefGoogle Scholar
  10. 10.
    D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. Engl. 47, 6550–6570 (2008)CrossRefGoogle Scholar
  11. 11.
    G.G. Wildgoose, C.E. Banks, R.G. Compton, Small 2, 182–193 (2006)CrossRefGoogle Scholar
  12. 12.
    E. Katz, I. Willner, Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004)CrossRefGoogle Scholar
  13. 13.
    D. Yang, F. Yang, J. Hu, J. Long, C. Wang, D. Fu, Q. Nib, Chem. Commun. 0, 4447–4449 (2009)Google Scholar
  14. 14.
    A. Masotti, A. Caporali, Int. J. Mol. Sci. 14, 24619–24642 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Seal, M. Hazarika, N. Paul, J.P. Borah, AIP Conf. Proc. 1942, 050083 (2018)CrossRefGoogle Scholar
  16. 16.
    T.N. Narayanan, A.P.R. Mary, M.M. Shaijumon, L. Ci, P.M. Ajayan, M.R. Anantharaman, Nanotechnology 20, 055607 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Correa-Duarte, M. Grzelczak, Verónica Salgueiriño-Maceira, M. Giersig, L.M. Liz-Marzán, M. Farle, K. Sierazdki, R. Diaz, J. Phys. Chem. B 109, 19060–19063 (2005)CrossRefGoogle Scholar
  18. 18.
    A.-T. Le, C.D. Giang, L.T. Tam, T.Q. Tuan, V.N. Phan, J. Alonso, J. Devkota, E. Garaio, J.A. García, R. Martín-Rodríguez, M.L. Fdez-Gubieda, H. Srikanth, M.-H. Phan, Nanotechnology 27, 155707 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    M. Dalal, J.-M. Greneche, B. Satpati, T.B. Ghzaiel, F. Mazaleyrat, R.S. Ningthoujam, P.K. Chakrabarti, ACS Appl. Mater. Interfaces 9(46), 40831–40845 (2017)CrossRefGoogle Scholar
  20. 20.
    M.L. Mojica Pisciotti, E. Lima Jr., M. Vasquez Mansilla, V.E. Tognoli, H.E. Troiani, A.A. Pasa, T.B. Creczynski-Pasa, A.H. Silva, P. Gurman, L. Colombo, G.F. Goya, J. Biomed. Mater. Res. B Appl. Biomater. 102(4), 860–868 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Menelaou, K. Georgoula, K. Simeonidisb, C. Dendrinou-Samara, Dalton Trans. 43, 3626–3636 (2014)CrossRefGoogle Scholar
  22. 22.
    R.D. Kahmei, J.P. Borah, Nanotechnology 30, 035706 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    A. Hunyek, C. Sirisathitkul, P. Harding, J. Ceram. Soc. Jpn. 119, 541543 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Varshney, K. Verma, A. Kumar, Chem. Phys. 131, 413–419 (2011)Google Scholar
  25. 25.
    N. Dehghan-Niarostami, F. Taleshi, A. Pahlavan, F. Zabihi, M.A. Taresi, Int. Nano Lett. 4, 121 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Yamakawa, Y. Sato, K. Fukutani, J. Chem. Phys. 144, 154703 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    R. Zhang, Y. Liu, S. Sun, Opt. Mater. 34, 1788–1794 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    B.P. Singh, V. Choudhary, S. Teotia, T.K. Gupta, V. Nand, S.R. Singh, R.B. Mathur, Adv. Mater. Lett. 6(2), 104–113 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara, P. Pramanik, Catal. Sci. Technol. 2, 1367–1374 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Kuila, S. Tiwary, M.R. Sahoo, A. Barik, P.D. Babu, V. Siruguri, B. Birajdar, P.N. Vishwakarma, J. Appl. Phys. 123, 064101 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    X. Liu, J. Liu, S. Zhang, Z. Nan, Q. Shi, Struct. J. Phys. Chem. C 120(2), 1328–1341 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, J. Nanosci. Nanotechnol. 8, 2836 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    K.V. Chandekar, K.M. Kant, Phys. B Condens. Matter 545, 536–548 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006), p. 58Google Scholar
  36. 36.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New York, 2009), p. 133Google Scholar
  37. 37.
    A. Franco Jr., V.S. Zapf, V.B. Barbeta, R.F. Jardim, J. Appl. Phys. 107, 073904 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    I. Beljakov, V. Meded, F. Symalla, K. Fink, S. Shallcross, M. Ruben, W. Wenzel, Nano Lett. 14, 3364–3368 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    J. Santiago Alvarez, Am. Chem. Soc. 125, 6795–6802 (2003)CrossRefGoogle Scholar
  40. 40.
    C.H. Pham, J. Cirera, F. Paesani, J. Am. Chem. Soc. 138, 6123–6126 (2016)CrossRefGoogle Scholar
  41. 41.
    P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh, S.H. Pawar, J. Phys. Chem. C 288, 149–157 (2014)Google Scholar
  42. 42.
    R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam, J. Mater. Chem. 21, 13388 (2011)CrossRefGoogle Scholar
  43. 43.
    A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14(1), 15977–16009 (2013)CrossRefGoogle Scholar
  44. 44.
    W.J. Atkinson, I.A. Brezovich, D.P. Chakraborty, IEEE Trans. Biomed. Eng. 31(1), 70–75 (1984)CrossRefGoogle Scholar
  45. 45.
    P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M.P. Morales, G. Rivero, A. Hernando, J. Phys. Chem. C 116, 25602–25610 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, J. Magn. Magn. Mater. 321, 1509–1513 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    B. Lahiri, S. Ranoo, A.W. Zaibudeen, J. Philip, J. Magn. Magn. Mater. 441, 310–327 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Papori Seal
    • 1
  • Nibedita Paul
    • 1
  • P. D. Babu
    • 2
  • J. P. Borah
    • 1
    Email author
  1. 1.Department of PhysicsNational Institute of Technology NagalandDimapurIndia
  2. 2.UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations