Advertisement

Applied Physics A

, 125:289 | Cite as

Hierarchical Sm-doped ZnO nanorod–nanosheet architecture: dielectric and ferroelectric studies

  • Sahil Goel
  • Binay KumarEmail author
Article
  • 42 Downloads

Abstract

A novel hierarchical samarium (Sm)-doped ZnO nanorod–nanosheet architecture with high-temperature ferroelectricity (Tc ~ 110 °C, Ec ~ 3.64 kV/cm and Pr ~ 0.08 μC/cm2) have been developed here using wet chemical co-precipitation method. In this study, we show the origin of ferroelectric behavior in Sm-doped ZnO product and study the effect of frequency and temperature on its dielectric characteristics. Interestingly as an impact of Sm-doping, the morphology of pristine ZnO got evolved from 1D nanopencils (NPCs) to 3D hierarchical architectures composed of both 1D nanorods (NRs) and 2D nanosheets (NSs). Crystallite size (L), lattice strain (ε), deformation stress (σ), and uniform energy density (u) of both isolated 1D NPCs and 3D hierarchical NR–NS architectures were evaluated using the Debye–Scherrer and Williamson–Hall methods. Temperature-dependent real dielectric constant (ε′) revealed a ferro- to para-electric transition peak at 110 °C. Temperature-dependent complex dielectric constant (ε″), dielectric loss (tan δ) and ac conductivity (σ) were found to increase with temperature. The frequency-dependent dispersion curves of dielectric properties showed an increase in ac conductivity with increase in frequency whereas complex part of dielectric constant and dielectric loss showed an opposite trend. The Sm-doped ZnO NR–NS architecture exhibits weak ferroelectricity with a coercive field (Ec) of 3.64 kV/cm and a remnant polarization (Pr) of 0.08 μC/cm2 at room temperature. Moreover, the high-temperature ferroelectricity established in this work will make Sm–ZnO a futuristic material in the field of designing memory devices.

Graphical abstract

Notes

Acknowledgement

The authors want to thank Armament Research Board, ARMREB, Defence Research and Development Organization (Sanction No.: ARMREB/MAA/2015/163), India, and the Department of Science and Technology (Sanction No.: EMR/2015/000385), India for financial support while carrying out of the work. S.G. is grateful to CSIR for Senior Research Fellowship.

References

  1. 1.
    S. Goel, N. Sinha, H. Yadav, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 106, 291 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Mater. Chem. Phys. 202, 56 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Yadav, N. Sinha, S. Goel, B. Kumar, J. Alloys Compd. 689, 333 (2016)CrossRefGoogle Scholar
  4. 4.
    N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Ceram. Int. 44, 8582 (2018)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, Science. 312, 242 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    F. Ali, W. Raza, X. Li, H. Gul, K.-H. Kim, Nano Energy 57, 879 (2019)CrossRefGoogle Scholar
  7. 7.
    R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 7, 97 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Zhu, W. Zeng, Sensors Actuators A Phys. 267, 242 (2017)CrossRefGoogle Scholar
  9. 9.
    S.-H. Lee, S. Han, H.S. Jung, H. Shin, J. Lee, J. Noh, S. Lee, I. Cho, J. Lee, J. Kim, H. Shin, J. Phys. Chem. C 114, 7185 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, J. Du, Sol. Energy Mater. Sol. Cells 172, 341 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Laurenti, N. Garino, S. Porro, M. Fontana, C. Gerbaldi, J. Alloys Compd. 640, 321 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Nano Energy 40, 195 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 91, 72 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada, H. Yamashita, Jpn. J. Appl. Phys. 35, 5160 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    A. Onodera, N. Tamaki, K. Jin, H. Yamashita, Jpn. J. Appl. Phys. 36, 6008 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    A. Onodera, K. Yoshio, H. Satoh, H. Yamashita, N. Sakagami, Jpn. J. Appl. Phys. 37, 5315 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, T. Ito, Jpn. J. Appl. Phys. 40, 5615 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    A. Hussain, N. Sinha, A.J. Joseph, K. Dhankhar, S. Goel, B. Kumar, J. Mater. Sci.: Mater. Electron. 28, 14298 (2017)Google Scholar
  21. 21.
    A.J. Joseph, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 43, 16676 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Hussain, N. Sinha, S. Goel, A.J. Joseph, B. Kumar, J. Alloys Compd. 790, 274 (2019)CrossRefGoogle Scholar
  23. 23.
    A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 44, 18633 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 19567 (2018)Google Scholar
  25. 25.
    H.-Y. Ye, Y. Zhang, S. Noro, K. Kubo, M. Yoshitake, Z.-Q. Liu, H.-L. Cai, D.-W. Fu, H. Yoshikawa, K. Awaga, R.-G. Xiong, T. Nakamura, Sci. Rep. 3, 2249 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, H. Yadav, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 13449 (2018)Google Scholar
  27. 27.
    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Singh, I. Bdikin, B. Kumar, Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.02.001 CrossRefGoogle Scholar
  28. 28.
    H. Yadav, N. Sinha, S. Goel, A. Hussain, B. Kumar, J. Appl. Crystallogr. 49, 2053 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.C. Yang, C. Song, F. Zeng, F. Pan, Y.N. Xie, T. Liu, Appl. Phys. Lett. 90, 242903 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, J. Appl. Phys. 103, 074107 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Y.C. Yang, C.F. Zhong, X.H. Wang, B. He, S.Q. Wei, F. Zeng, F. Pan, J. Appl. Phys. 104, 064102 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 13818 (2018)Google Scholar
  33. 33.
    K. Batra, N. Sinha, S. Goel, H. Yadav, A.J. Joseph, B. Kumar, J. Alloys Compd. 767, 1003 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, B. Kumar, Ionics (Kiel). 25, 1373 (2019)CrossRefGoogle Scholar
  35. 35.
    S. Goel, N. Sinha, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 105, 29 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    R. Gupta, R.P. Chauhan, S.K. Chakarvarti, R. Kumar, Ionics (Kiel). 25, 341 (2019)CrossRefGoogle Scholar
  37. 37.
    S. K. Gupta, R. Gupta, P. Singh, V. Kumar, M. K. Jaiswal, S. K. Chakarvarti, R. Kumar, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406, 188 (2017)Google Scholar
  38. 38.
    R. Gupta, R. Kumar, J. Mater. Sci. Mater. Electron. 30, 2192 (2019)CrossRefGoogle Scholar
  39. 39.
    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, J. Nondestruct. Eval. 34, 14 (2015)CrossRefGoogle Scholar
  40. 40.
    F. Wu, Y. Zhao, H. Zhang, Y. Tong, Appl. Phys. A 120, 941 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    X.Y. Kong, Z.L. Wang, Nano Lett. 3, 1625 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    X.Y. Kong, Science. 303, 1348 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    W.U. Huynh, Science. 295, 2425 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Y.V. Kaneti, Z. Zhang, J. Yue, Q.M.D. Zakaria, C. Chen, X. Jiang, A. Yu, Phys. Chem. Chem. Phys. 16, 11471 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Xu, Z. Xue, N. Qin, Z. Cheng, Q. Xiang, Sensors Actuators B Chem. 242, 148 (2017)CrossRefGoogle Scholar
  46. 46.
    C. Zhang, Y. Wang, S. Bi, G. Luo, Ind. Eng. Chem. Res. 50, 13355 (2011)CrossRefGoogle Scholar
  47. 47.
    S.K. Sharma, D.Y. Kim, J. Mater. Sci. Technol. 32, 12 (2016)CrossRefGoogle Scholar
  48. 48.
    P.X. Gao, Z.L. Wang, J. Am. Chem. Soc. 125, 11299 (2003)CrossRefGoogle Scholar
  49. 49.
    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, D.C. Rao, K. Gopalaiah, B. Kumar, J. Appl. Crystallogr. 50, 1498 (2017)CrossRefGoogle Scholar
  50. 50.
    S. Goel, N. Sinha, H. Yadav, A. Hussain, B. Kumar, Mater. Res. Bull. 83, 77 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 12 (2018)CrossRefGoogle Scholar
  52. 52.
    S. Bhukkal, N. Sinha, H. Yadav, S. Goel, B. Singh, I. Bdikin, B. Kumar, Vacuum 154, 90 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    S. Kamba, V. Bovtun, J. Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas, M. Kosec, J. Phys.: Condens. Matter 12, 497 (2000)ADSGoogle Scholar
  54. 54.
    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, M. Chaman, A. Azam, A.H. Naqvi, Mater. Res. Bull. 47, 4161 (2012)CrossRefGoogle Scholar
  55. 55.
    H. Terauchi, Y. Yoneda, H. Kasatani, K. Sakaue, T. Koshiba, S. Murakami, Y. Kuroiwa, Y. Noda, S. Sugai, S. Nakashima, H. Maeda, Jpn. J. Appl. Phys. 32, 728 (1993)CrossRefGoogle Scholar
  56. 56.
    M.K. Gupta, N. Sinha, B. Kumar, J. Appl. Phys. 112, 014303 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    S. Sagadevan, I. Das, K. Pal, P. Murugasen, P. Singh, J. Mater. Sci.: Mater. Electron. 28, 5235 (2017)Google Scholar
  58. 58.
    B. Louati, F. Hlel, K. Guidara, J. Alloys Compd. 486, 299 (2009)CrossRefGoogle Scholar
  59. 59.
    A.K. Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  60. 60.
    R. Khan, S. Fashu, J. Mater. Sci.: Mater. Electron. 28, 4333 (2017)Google Scholar
  61. 61.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, J. Sol–Gel. Sci. Technol. 83, 394 (2017)CrossRefGoogle Scholar
  62. 62.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  63. 63.
    Dhananjay and S. B. Krupanidhi, Appl. Phys. Lett. 89, 082905 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Crystal Lab, Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations