Advertisement

Applied Physics A

, 125:284 | Cite as

Optical and electrical properties of Fe3O4@MoS2 nanocomposites and doped lead boron tellurite glass

  • Qiuling ChenEmail author
  • Yanrong Wang
  • Kai Su
  • Qiuhua Ma
Article
  • 37 Downloads

Abstract

Transition metal oxide core–shell-nanostructured Fe3O4@MoS2 is attractive in photocatalytic, optoelectronics and optical applications. Magnetic Fe3O4@MoS2 core–shell nanocomposites were synthesized by a facile hydrothermal method. Transmission electron microscopy (TEM) results show that the 80-nm-diameter nanoparticles were composed of Fe3O4 core and MoS2 shell. The presence of characteristic of Fe–O and Mo–O vibrations in Fe3O4@MoS2 FT-IR spectra indicate the Fe3O4 has been composited with MoS2 successfully. The optical UV–Vis spectra of Fe3O4@MoS2 composites exhibited a strong peak at 250–300 nm due to the strong absorption of MoS2. The photoluminescence spectra of Fe3O4@MoS2 showed two peaks at 670 and 625 nm corresponding to A1 and B1 excitons of MoS2. Glass-containing nanoparticles have promising multifunctional advantages such as the simultaneous existence of magnetic, optical and photoluminescence. Glasses containing different Fe3O4@MoS2 contents were fabricated in this study by melt-quenching method. Glass network was disordered by the doping, and as the doping content increasing, the coordination numbers were changed and more non-bridging oxygen numbers were produced, these modifications on glass structure induced changes of glass properties. Compared to spectra of base glass, the UV–Vis absorption spectra of doped glasses showed a red-shift in cutoff wavelength and an absorption peak around 680 nm due to the excitation of Mo5+ (4d1) ions. The photoluminescence spectra of Fe3O4@MoS2-doped glasses present one intense peak centered around 570 nm due to the charge transfer of O2−→Mo6+ ions in MoO42− units, and the intensity of this emission peak increased with doping contents. The conductivity of base glass gets increased from 1.59 × 10−7 to 2.08 × 10−6 S cm−1 when the doping content reaches to 5%. Such improvement is mainly caused by the non-adiabatic small polaron hopping at 473 K and non-bridging oxygens production. Glass doped with 5% Fe3O4@MoS2 exhibited promising photoluminescence, optical cutoff wavelength (526 nm) and high electrical conductivity (2.08 × 10−6 S cm−1) due to the charge transfer of Fe and Mo ions and high polarization property of Fe3O4@MoS2.

Notes

Acknowledgements

Thanks for the funding from Chinese National Nature Science Foundation NSFC-U1604120, Natural Science Project from Science and Technology Department of Henan Province (314090013).

References

  1. 1.
    M.L. Braunger, C.A. Escanhoela Jr., Electrical conductivity of silicate glasses with tetravalent cations substituting Si. J. Non-Cryst. Solids 358, 2855–2861 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    S.N. Kishore, A. Agarwal, Study of structural, optical and transport properties of semiconducting Fe2O3-PbO-B2O3 glasses. Indian J. Pure Appl. Phys. 48, 205–211 (2010)Google Scholar
  3. 3.
    K. Jan, L. Dimitrij, Electrical and dielectric properties of TeO2-ZnO glasses. Ceramics Silikáty 46(4), 140–147 (2002)Google Scholar
  4. 4.
    S.M. Salem, E.A. Mohamed, Electrical conductivity and dielectric properties of Bi2O3–GeO2–PbO–MoO3 glasses. J. Non-Cryst. Solids 357, 1153–1159 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Rathore, A. Dalvi, Effect of conditional glass former variation on electrical transport in Li2O–P2O5 glassy and glass-ceramic ionic system. Solid State Ionics 263, 119–124 (2014)CrossRefGoogle Scholar
  6. 6.
    A.C.S. Brigida, I.M. Nascimento, Experimental and theoretical analysis of an optical current sensor for high power systems. Photonic Sens. 3(1), 26–34 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Ricardo, H. Martins, I. Nascimento, J.M. Baptista, Optical current sensors for high power systems: a review. Appl. Sci. 2, 602–628 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Zubia, L. Casado, G. Aldabaldetreku, A. Montero, Design and development of a low-cost optical current sensor. Sensors 13, 13584–13595 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Zhou, Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system. J. Non-Cryst. Solids 386, 90–94 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Q. Chen, Y. Wang, Synthesis and properties of nanocrystal BiPO4 in diamagnetic PbO-Bi2O3-B2O3 glass. J. Non-Cryst. Solids 481, 85–93 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M.A.P. Silva, Y. Messaddeq, Structural studies on TeO2–PbO glasses. J. Phys. Chem. Solids 62, 1055–1060 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    I. Mustafa, Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray. Int. J. Mol. Sci. 14, 3201–3214 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Upender, V.C. Mouli, Optical, thermal and electrical properties of ternary TeO2–WO3–PbO glasses. J. Mol. Struct. 1006, 1–3 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Bih, M. El Omari, Electrical properties of glasses in the Na2O–MoO3–P2O5 system. Mater. Lett. 50, 308–317 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Pal, K. Hirota, Structural and electrical properties of MoO3–TeO2 glasses. J. Phys. D Appl. Phys. 34, 459–464 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Noorazlan, Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. J. Nanomater. 940917, 1–8 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Chen, B.H. Song, Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10, 1536–1543 (2014)CrossRefGoogle Scholar
  18. 18.
    P.C. Panta, C.P. Bergmann, Raman spectroscopy of iron oxide of nanoparticles (Fe3O4). J. Mater. Sci. Eng. 5, 1–3 (2015)Google Scholar
  19. 19.
    A.S. Krishna Kumar, S.J. Jiang, Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 2, 6187–6200 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, P. Chen, Fe3O4 nanospheres on MoS2 nanoflake: electrocatalysis and detection of Cr(VI) and nitrite. J. Electroanal. Chem. 761, 14–20 (2016)CrossRefGoogle Scholar
  21. 21.
    H.J. Song, S. You, MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41, 13896–13902 (2015)CrossRefGoogle Scholar
  22. 22.
    Yu. Jie, W. Yin, Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5(9), 931–945 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Qiuling, W. Hui, Plasmon enhanced faraday rotation in Fe3O4/Ag ferrofluids for magneto optical sensing. Plasmonics 13(1), 353–363 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Qiuling, M. Zhang, Structures and magneto optical property of diamagnetic TiO2-TeO2-PbO-B2O3 glass. J. Non-Cryst. Solids 468, 58–66 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C. Qiuling, S. Kai, Optical and electrical properties of SeO2 modified PbO-Bi2O3-B2O3 glasses. J. Non-Cryst. Solids 498, 448–454 (2018)CrossRefGoogle Scholar
  26. 26.
    E. Keenan, M. Dungey, D. Curtis, Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 10, 2152–2161 (1998)CrossRefGoogle Scholar
  27. 27.
    D.H. Deng, K.S. Novoselov, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    I. Ardelean, N. Mures, IR and Raman spectroscopic investigation of Cr2O3-TeO2-B2O3-PbO glass. Int. J. Mod. Phys. B 18(1), 95–101 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S.H. Elazoumi, H.A.A. Sidek, Effect of PbO on optical properties of tellurite glass. Results Phys. 8, 16–25 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    V. Forsberg, R. Zhang, Exfoliated MoS2 in water without additives. PLoS One 11(4), e01545221 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Lin, J. Wang, Fe3O4@MoS2 core–shell composites: preparation, characterization and catalytic application. J. Phys. Chem. C 119(24), 13658–13664 (2015)CrossRefGoogle Scholar
  32. 32.
    J.A. Duffy, Optical basicity: a practical acid–base theory for oxides and oxyanions. J. Chem. Educ. 73(12), 1138–1142 (1996)CrossRefGoogle Scholar
  33. 33.
    F. El-Diasty, F.A. Abdel-Wahab, Influence of orbital hybridization on Kerr nonlinearity of a heavy metal borate glass: scaling of polarizability and the imaginary contribution of optical susceptibility. Am. J. Opt. Photonics 2(4), 54–64 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Gauthier, Wavelength dependence of the refractive index. Phys. Teach. 25, 502–508 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Q. Chen, S. Kai, H. Wang, Multiferroic BiFeO3 enhanced Faraday rotation effect in magneto optical glasses. J. Non-Cryst. Solids 495, 75–84 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    H.A. El Batal, F.H. ElBatal, Gamma rays interactions with strontium borate glasses doped with first-row transition metal oxides. Open Spectrosc. 8, 1–8 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, Structural role of molybdenum in nuclear glasses: an EXAFS study. J. Nucl. Mater. 322, 15–20 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    L.S. Rao, M.S. Reddy, Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O-MoO3-B2O3: CuO glass system. J. Solid State Sci. 11, 578–587 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    I. Pal, A. Agarwal, Spectral analysis and structure of Cu2+-doped cadmium bismuth borate glasses. Indian J. Pure Appl. Phys. 50, 237–244 (2012)Google Scholar
  40. 40.
    C. Fei, W. Lei, Enhanced local photoluminescence of a multilayer MoS2 nanodot stacked on monolayer MoS2 flakes. Opt. Mater. Express 4, 1365–1373 (2017)Google Scholar
  41. 41.
    S.Y. Wang, T.S. Ko, Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn. J. Appl. Phys. 53, 04EH071 (2014)Google Scholar
  42. 42.
    A. Molina-Sánchez, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70, 554–586 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    X. Meng, S. Maurai, Intense visible emission from d0 ions doped silicate glasses. J. Ceram. Soc. Jpn. 116, 1147–1149 (2008)CrossRefGoogle Scholar
  44. 44.
    D. Ehrt, Photoluminescence in glasses and glass ceramics. Mater. Sci. Eng. 2, 012001 (2009)Google Scholar
  45. 45.
    X. Liu, L. Li, H.M. Noh, Chemical bond properties and charge transfer bands of O2−–Eu3+, O2−–Mo6+ and O2−–W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors. Dalton Trans. 43, 8814–8825 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Wen, B.-M. Cheng, Optical properties of selected 4d and 5d transition metal ion-doped glasses. RSC Adv. 7, 26411–26419 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Zhao, J. Liu, Ya. Zhou, Preparation of MoO3 nanostructures and their optical properties. J. Phys. Condens. Matter 15, L547–L552 (2003)CrossRefGoogle Scholar
  48. 48.
    A. Mekki, G.D. Khattak, Structural and magnetic properties of MoO3–TeO2 glasses. J. Non-Cryst. Solids 351, 2493–2500 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    M. Ponce-Mosso, M. Pérez-González, Enhanced photocatalytic activity of amorphous MoO3 thin films deposited by rf reactive magnetron sputtering. Catal. Today (2010).  https://doi.org/10.1016/j.cattod.2018.04.065 CrossRefGoogle Scholar
  50. 50.
    B. Eraiah, Electronic-ionic conductivity of lithium-vanado-phosphate glasses. Solid State Ion. Mapana J. Sci. 14(1), 9–14 (2015)Google Scholar
  51. 51.
    V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of electronic ion polarizability and average single bond strength (review). J. Univ. Chem. Technol. Metall. 45(3), 219–250 (2010)Google Scholar
  52. 52.
    A.M. Cruz, E.B. Ferreira, Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. J. Non-Cryst. Solids 355(45–47), 2295–2301 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Sciences and EngineeringHenan University of TechnologyZhengzhouChina

Personalised recommendations