Advertisement

Applied Physics A

, 125:276 | Cite as

The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study

  • Farhad JahantighEmail author
  • Mohammad Javad Safikhani
Article
  • 35 Downloads

Abstract

In this paper, we have investigated the performance of solid-state dye-sensitized solar cells (SDSSCs) fabricated from four different hole transport materials (HTMs) through SCAPS-1D simulation. Two organic and two inorganic HTM layers are examined in this study. The structure of SDSSC employed in this work is composed of FTO/TiO2/N719/HTM/Au and only the HTM layer is changed for each simulation. The materials employed as HTM are PEDOT:PSS, Spiro-OMETAD, CuI, and CuSCN. In each case, the VOC, JSC, FF, PCE, and quantum efficiency parameters are analyzed. The effects of HTM type and thickness, temperature and hole concentration on different parameters of the SDSSCs are compared with each other. The results indicate that using CuI as HTM yields better performance in comparison with other HTMs and can reach an efficiency of 17.72%. The simulation results can be used to make a comparison between organic and inorganic HTMs and also to improve the parameters of conductive polymers with secondary doping and to fabricate optimized SDSSCs in laboratory and industrial scales.

Notes

References

  1. 1.
    B. O’regan, M. Grätzel, Nature 353, 737 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    H.S. Jung, J.-K. Lee, J. Phys. Chem. Lett. 4, 1682 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Roslan, M. Ya’acob, M. Radzi, Y. Hashimoto, D. Jamaludin, G. Chen, Renew. Sustain. Energy Rev. 92, 171 (2018)CrossRefGoogle Scholar
  4. 4.
    F. Jahantigh, S.B. Ghorashi, A.R. Belverdi, Phys. B 542, 32 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    P.P. Kumavat, P. Sonar, D.S. Dalal, Renew. Sustain. Energy Rev. 78, 1262 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Asemi, M. Ahmadi, M. Ghanaatshoar, Ceram. Int. 44, 12862 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Yella et al., Science 334, 629 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, L638 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Mathew et al., Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2011)Google Scholar
  12. 12.
    M. Wang, C. Grätzel, S.M. Zakeeruddin, M. Grätzel, Energy Environ. Sci. 5, 9394 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 32, 28 (2002)CrossRefGoogle Scholar
  14. 14.
    J.H. Yum, P. Chen, M. Grätzel, M.K. Nazeeruddin, ChemSusChem: Chem Sustain. Energy Mater. 1, 699 (2008)CrossRefGoogle Scholar
  15. 15.
    N. Manfredi, A. Bianchi, V. Causin, R. Ruffo, R. Simonutti, A. Abbotto, J. Polym. Sci. Part A Polym. Chem. 52, 719 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach, Appl. Phys. Lett. 79, 2085 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    S. Moribe, N. Kato, K. Higuchi, K. Mizumoto, T. Toyoda, Appl. Phys. Express 10, 042301 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Ahmadi, M. Asemi, M. Ghanaatshoar, Appl. Phys. A 124, 529 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    U. Bach, M. Grätzel.: Solid-state dye-sensitized mesoporous TiO2 solar cells (École Polytechnique Fédérale de Lausanne, Lausanne, 2000). https://infoscience.epfl.ch/record/32663/files/EPFL_TH2187.pdf?version=1 Google Scholar
  20. 20.
    L. Schmidt-Mende, S.M. Zakeeruddin, M. Grätzel, Appl. Phys. Lett. 86, 013504 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    W. Zhang, Y. Cheng, X. Yin, B. Liu, Macromol. Chem. Phys. 212, 15 (2011)CrossRefGoogle Scholar
  22. 22.
    A.G. MacDiarmid, A.J. Epstein, Synth. Met. 69, 85 (1995)CrossRefGoogle Scholar
  23. 23.
    Z. Yu, Y. Xia, D. Du, J. Ouyang, ACS Appl. Mater. Interfaces. 8, 11629 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Ouyang, Displays 34, 423 (2013)CrossRefGoogle Scholar
  25. 25.
    A.G. Macdiarmid, A.J. Epstein, Macromolecular Symposia (Wiley, New York, 1995), p. 835Google Scholar
  26. 26.
    L. Chao, Y.K. Han, B.Z. Hiseh, Y.J. Huang, T.H. Hsieh, C.M. Lin, S.Z. Lin, P.H. Tseng, K.S. Ho, J. Appl. Polym. Sci. 108, 3516 (2008)CrossRefGoogle Scholar
  27. 27.
    A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, S.K. Sarkar, J. Phys. Chem. Lett. 5, 1748 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Nat. Commun. 5, 3834 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361, 527 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    K. Decock, S. Khelifi, M. Burgelman, Thin Solid Films 519, 7481 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Yamaguchi, T. Nisimura, W.Y. Sohn, Q. Shen, S. Kuwahara, K. Katayama, Anal. Sci. 33, 1041 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Illa, P. Basak, Sol. Energy 169, 159 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    K. Mamma, K. Siraj, N. Meka, J. Polym. Eng. 33, 785 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Donoval et al., Appl. Surf. Sci. 395, 86 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    B. Kadem, W. Cranton, A. Hassan, Org. Electron. 24, 73 (2015)CrossRefGoogle Scholar
  36. 36.
    T.-R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao, J. Mater. Chem. C 3, 3760 (2015)CrossRefGoogle Scholar
  37. 37.
    O. Dimitriev, D. Grinko, Y.V. Noskov, N. Ogurtsov, A. Pud, Synth. Met. 159, 2237 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Abate et al., Phys. Chem. Chem. Phys. 15, 2572 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Leijtens, J. Lim, J. Teuscher, T. Park, H.J. Snaith, Adv. Mater. 25, 3227 (2013)CrossRefGoogle Scholar
  40. 40.
    S.R. Raga, F. Fabregat-Santiago, Phys. Chem. Chem. Phys. 15, 2328 (2013)CrossRefGoogle Scholar
  41. 41.
    U. Mehmood, A. Al-Ahmed, F.A. Al-Sulaiman, M.I. Malik, F. Shehzad, A.U.H. Khan, Renew. Sustain. Energy Rev. 79, 946 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Mohammadnejad, A. Khalafi, S.M. Ahmadi, Sol. Energy 133, 501 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    N. Jamalullail, I.S. Mohamad, M.N. Norizan, N. Mahmed, Solid State Phenomena (Trans Tech Publication, Zurich, 2018), p. 146Google Scholar
  44. 44.
    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Atomic and Molecular Group, Faculty of PhysicsUniversity of KashanKashanIran
  2. 2.Institute of Nanoscience and Nanotechnology, University of KashanKashanIran

Personalised recommendations