Applied Physics A

, 125:279 | Cite as

Study of NiO nanoparticles, structural and magnetic characteristics

  • Francisco AscencioEmail author
  • Ana Bobadilla
  • Roberto Escudero


NiO nanoparticles with different sizes were synthesized at different temperatures from 300 to \(700\,^{\circ }\)C to the study of behavior related to size. The nanoparticles show dimensions in the range 5.07–68.29 nm, which were determined by transmission electron microscopy images. The nanoparticles present an irregular morphology from 300 to \(600\,^{\circ }\)C, while the observed structure is a truncated octahedron with FCC structure only for samples at \(700\,^{\circ }\)C. X-ray diffraction measurements and Rietveld analysis verify this crystal structure, the crystal size, and the lattice parameters. Raman spectroscopy of the nanoparticles shows the normal modes of proposed truncated octahedrons related to longitudinal optical, transverse optical phonons, and a combination of both. Optical properties were measured by UV–visible spectroscopy to analyze the variation of the band gap in function of the size. In addition, magnetic measurements, magnetization versus temperature, and magnetization versus magnetic field present ferromagnetic behavior. M–H hysteresis curves show the coercive field with anisotropic characteristics that we related to the competition between two magnetic orders coexisting in the samples.


Ni oxide Nanoparticles Magnetic behavior Raman spectroscopy 



Thanks to R. Hernandez for the technical assistance in TEM. Thanks to Dr. R. Herrera for the facilities to use the confocal microscope equipped with micro-Raman spectroscopy. To A. Pompa and A. Lopez for technical support. Thanks to Dr. L. Serkovic for reading the manuscript. We acknowledge DGAPA Grant No. IT00217, F. Ascencio thanks to the DGAPA UNAM, for the support through the Postdoctoral Scholarship.


  1. 1.
    G. Srinivasan, M. Seehra, Phys. Rev. B 29, 6295–6298 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    W. Zhang, N. Yu, W. Yu, B. Tang, Eur. Phys. J. B 64, 153–158 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Cooper, A. Ionescu, R. Langford, K. Ziebeck, C. Barnes, R. Gruar, C. Tighe, J. Darr, N. Thanh, B. Ouladdiaf, J. Appl. Phys. 114, 083906 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Chen, Y. Chen, Q. Zhang, X. Tang, D. Wang, Z. Chen, P. Mascher, S. Wang, ECS J. Solid State Sci. Technol. 6(12), 798–804 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Adhikary, P. Chakraborty, B. Das, A. Datta, S. Dash, S. Roy, J. Chen, T. Chattopadhyay, RSC Adv. 5, 35917 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Roy, R. Katoch, S. Angappane, IEEE Trans. Magn. 55, 2 (2019)CrossRefGoogle Scholar
  7. 7.
    N. Rinaldi, P. Gorria, D. Martnez, A. Fuertes, L. Fernndez, J. Rodrguez, I. de Pedro, M. Fdez, J. Alonso, L. Olivi, G. Aquilanti, J. Blanco, Nanoscale 6, 457–465 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R. Dietz, G. Parisot, A. Meixner, Phys. Rev. B 4(7), 2302–2310 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y. Cheng, H. Zhou, J. Mater. Chem. A 5, 6597 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Babu, G. Ravi, T. Mahalingam, M. Kumaresavanjic, Y. Hayakawa, Dalton Trans. 44, 4485 (2015)CrossRefGoogle Scholar
  11. 11.
    V. Usha, R. Vettumperuma, S. Kalyanaraman, R. Thangavel, Int. J. Nanosci. 17(3), 1850003 (2018)CrossRefGoogle Scholar
  12. 12.
    N. Mironova, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Prs, J. Phys. Conf. Ser. 93, 012039 (2007)CrossRefGoogle Scholar
  13. 13.
    X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun. 137, 581–584 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Cao, W. Zeng, T. Li, J. Gong, Z. Zhu, Mater. Lett. 156, 2527 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Ravikumar, B. Kisan, A. Perumal, AIP Adv. 5, 087116 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Fu, M. Ai, Y. Duan, L. Lu, X. Tian, D. Sun, Y. Xu, Y. Sun, RSC Adv. 7, 52312 (2017)CrossRefGoogle Scholar
  17. 17.
    P. Sheena, K. Priyanka, N. Aloysius, S. Ganesh, T. Varghese, Bull. Mater. Sci. 38(4), 825–830 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Tong, Q. Hu, W. Wu, W. Li, H. Qian, Y. Liang, J. Mater. Chem. 22, 17494 (2012)CrossRefGoogle Scholar
  19. 19.
    W. Duan, S.H. Lu, Z.L. Wu, Y.S. Wang, J. Phys. Chem. C 116, 26043 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Gomez, L.M. Beltran, R. Herrera, Ultramicroscopy 110, 95 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Bergmann, P. Friedel, R. Kleeberg, IUCr Commission on Powder Diffraction Newsletter, vol. 20, p. 58 (1998)Google Scholar
  22. 22.
    N. Dbelin, R. Kleeberg, J. Appl. Crystallogr. 48, 1573–1580 (2015)CrossRefGoogle Scholar
  23. 23.
    M.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), p. 634Google Scholar
  24. 24.
    M. Ghosh, K. Biswas, A. Sundaresan, C. Rao, J. Mater. Chem. 16, 106–111 (2006)CrossRefGoogle Scholar
  25. 25.
    E. Aytan, B. Debnath, F. Kargar, Y. Barlas, M. Lacerda, J. Li, R. Lake, J. Shi, A. Balandin, Appl. Phys. Lett. 111, 252402 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    P. Dharmaraj, S. Prabu, C. Nagarajan, J. Kim, H. Park, Kim. Mater. Sci. Eng. B. 128, 111–114 (2006)CrossRefGoogle Scholar
  27. 27.
    N. Mironova, A. Kuzmin, J. Grabis, I. Sildos, V. Voronin, I. Berger, V. Kazantsev, Solid State Phenom. 341, 168–169 (2010)Google Scholar
  28. 28.
    W. Wang, Y. Liu, C. Xu, C. Zheng, G. Wang, Chem. Phys. Lett. 362, 119–122 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    A. Chhaganlal, H. Cheng, Y. Chang, J. Grace Mater. Res. Express 3, 035017 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    F. Thema, E. Manikandan, A. Gurib, M. Maaza, J. Alloys Compd. 657, 655–661 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Valladares, A. Ionescu, S. Holmes, C. Barnes, A. Domnguez, O. Quispe, J. Gonzlez, S. Milana, M. Barbone, A. Ferrari, H. Ramos, Y. Majima, J. Vac. Sci. Technol. B 32, 051808 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, R. Grigorovic, A. Vancu, Physica Status Solidi 15, 627 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    M. Arif, A. Sanger, A. Singh, J. Electron. Mater. 47, 7 (2018)Google Scholar
  34. 34.
    A. Ramasami, M. Reddy, G. Balakrishna, Mater. Sci. Semi Process. 40, 94202 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Patidar, K. Rathore, N. Saxena, K. Sharma, T. Sharma, J. Nano Res. 3, 97–102 (2008)CrossRefGoogle Scholar
  36. 36.
    M. Singh, M. Goyal, K. Devlal, J. Taibah Univ. Sci. 12(4), 470–475 (2018)CrossRefGoogle Scholar
  37. 37.
    L. Wei, Mater. Chem. Phys. 99, 174–180 (2006)CrossRefGoogle Scholar
  38. 38.
    N. Rinaldi, P. Gorria, D. Martnez, A. Fuertes, L. Fernndez, I. Puente, J. Blanco, Nanotechnology 26, 305705 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Tadic, D. Nikolic, M. Panjan, G. Blake, J. Alloys Compd. 647, 1061–1068 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Francisco Ascencio
    • 1
    Email author
  • Ana Bobadilla
    • 1
  • Roberto Escudero
    • 1
  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations