Applied Physics A

, 125:287 | Cite as

Detection of interfacial charge transfer in MoS2/PbI2 heterostructures via Kelvin probe force microscope

  • Simin Ding
  • Xuling Xiao
  • Shuhua Liu
  • Jie Wu
  • Zongyu Huang
  • Xiang Qi
  • Jun LiEmail author


In this paper, MoS2/PbI2 heterostructures were synthesized via a two-step synthesis method using vapor deposition and direct water bath heating. Raman spectroscopy and Atomic Force Microscope were used to characterize the MoS2/PbI2 heterostructures. The Kelvin probe force microscope was characterized the surface potential of MoS2/PbI2 heterostructures. It has shown that the surface potential has undergone a significant change transfer in the interlayer between MoS2 and PbI2, which means that at the interface charge transfer occurs and the electrons transfer from MoS2 to PbI2. These results provide a theoretical basis for further understanding of the electrical properties of MoS2/PbI2 heterostructures.



This work was financially supported by the Grants from National Natural Science Foundation of China (No. 11874316 and 11474244), the National Basic Research Program of China (2015CB921103), the Innovation Research Team in University (IRT 17R91), and Science and Technology Program of Xiangtan (No. CXY-ZD20172002).


  1. 1.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, N.O. Weiss, X. Duan, H.C. Cheng, Y. Huang, X. Duan, Van der Waals heterostructures and devices. Nature Reviews Materials. 1, 16042 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    C. Wang, H. Fan, X. Ren, J. Fang, Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl. Phys. A 124, 99 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852–3858 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Wang, X. Wang, J.H. Warner, All chemical vapor deposition growth of MoS2:h-BN Vertical van der Waals heterostructures. ACS Nano 9, 5246–5254 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, F. Meng, J.R. Christianson, C. Arroyo Torres, M.A. Lukowski, D. Liang, J.R. Schmidt, S. Jin, Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14, 3047–3054 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kim, A. Konar, W. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. Yoo, J. Choi, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Communications. 3, 1011 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, C. Cong, C. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9, 2857–2861 (2013)CrossRefGoogle Scholar
  15. 15.
    R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, Ph Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Kośmider, J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B. 87, 216 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014)CrossRefGoogle Scholar
  20. 20.
    B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. Chien Sum, K.P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3, 025020 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Zhong, L. Huang, H.X. Deng, X. Wang, B. Li, Z. Wei, J. Li, Flexible photodetectors based on phase dependent PbI2 single crystals. J Mater Chem C. 4, 6492–6499 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Ito, S. Tanaka, H. Nishino, Lead-halide perovskite solar cells by CH3NH3I dripping on PbI2-CH3NH3I-DMSO precursor layer for planar and porous structures using CuSCN hole-transporting material. J Phys Chem Lett. 6, 881–886 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Yan, B. An, Z. Fan, X. Zhu, X. Lin, Z. Jin, G. Ma, Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Appl. Phys. A 122, 414 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Ma, X. Zhao, T. Wang, W. Li, X. Wang, S. Chang, Y. Li, M. Zhao, X. Dai, Band structure engineering in a MoS2/PbI2 van der Waals heterostructure via an external electric field. Phys Chem Chem Phys. 18, 28466–28473 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Sun, Z. Huang, Z. Zhou, J. Wu, L. Zhou, Y. Cheng, J. Liu, M. Yu, P. Yu,W. Zhu, Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. arXiv preprint arXiv:1810.08927, (2018)
  26. 26.
    H. Huang, H. Wang, J. Zhang, D. Yan, Surface potential images of polycrystalline organic semiconductors obtained by kelvin probe force microscopy. Appl. Phys. A 95, 125–130 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    T. Filleter, K.V. Emtsev, T. Seyller, R. Bennewitz, Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 1191 (2008)CrossRefGoogle Scholar
  28. 28.
    I. Sharma, B. Mehta, Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Appl. Phys. Lett. 110, 061602 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M. Zhong, S. Zhang, L. Huang, J. You, Z. Wei, X. Liu, J. Li, Large-scale 2D PbI2 monolayers: experimental realization and their indirect band-gap related properties. Nanoscale. 9, 3736–3741 (2017)CrossRefGoogle Scholar
  30. 30.
    M.W. Lin, I.I. Kravchenko, J. Fowlkes, X. Li, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, K. Xiao, Thickness-dependent charge transport in few-layer MoSâ, field-effect transistors. Nanotechnology. 27, 165203 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Choi, Z. Shaolin, W. Yang, Layer-number-dependent work function of MoS2 nanoflakes. J Korean Phys Soc. 64, 1550–1555 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    J. Li, X. Qi, G. Hao, L. Ren, J. Zhong, In-situ investigation of graphene oxide under UV irradiation: Evolution of work function. AIP Adv. 5, 067154 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A.S. Toulouse, B.P. Isaacoff, G. Shi, M. Matuchová, E. Kioupakis, R. Merlin, Frenkel-like Wannier-Mott excitons in few-layer PbI2. Phys. Rev. B. 91, 165308 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    T. Cheiwchanchamnangij, W.R.L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B. 85, 205302 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Simin Ding
    • 1
    • 2
  • Xuling Xiao
    • 1
    • 2
  • Shuhua Liu
    • 1
    • 2
  • Jie Wu
    • 1
    • 2
  • Zongyu Huang
    • 1
    • 2
  • Xiang Qi
    • 1
    • 2
  • Jun Li
    • 1
    • 2
    Email author
  1. 1.Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices and School of Physics and OptoelectronicsXiangtan UniversityHunanPeople’s Republic of China
  2. 2.Laboratory for Quantum Engineering and Micro-Nano Energy TechnologyXiangtan UniversityHunanPeople’s Republic of China

Personalised recommendations