Advertisement

Applied Physics A

, 125:327 | Cite as

Improving CIGS thin film by evaporation of CIGS nanoparticles without phase change

  • E. Ghanbari
  • M. ZahedifarEmail author
  • M. Moradi
Article
  • 26 Downloads

Abstract

CIGS nanoparticles (NPs) were synthesized using solvothermal method and evaporated to deposit the CIGS layer. The effects of annealing conditions and selenization process on the CIGS phase, optical properties and morphology of the resulting layers were investigated. It was found that heating process did not change the phase of CIGS layer and the phase was similar to that of NPs, while the phase of CIGS layer was changed in the selenized layer. The crystallinity was improved for the selenized and heated layers and the grain size and energy gap of the layers were affected by these processes. The AFM images showed that the heated layer had smoother surface compared to the selenized layer. The results revealed that the layers fabricated by evaporation method are very compact and the uniform surface can be achieved only by heating the layer.

Notes

Acknowledgements

The research council of the University of Kashan is gratefully acknowledged for financial support of this work (Grant number: 785216).

References

  1. 1.
    R.N. Bhattacharya, M.K. Oh, Y. Kim, Sol. Energy Mater. Sol. Cells. 98, 198–202 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Erfurth, Z. Jehl, M. Bouttemy, N. Dahan, P. Tran-Van, I. Gerard, A. Etcheberry, J.J. Greffet, M. Powalla, G. Voorwinden, D. Lincot, J.F. Guillemoles, N. Naghavi, Appl. Surf. Sci. 258, 3058–3061 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Balboul, H.W. Schock, S.A. Fayak, A. Abdel El-Aal, J.H. Werner, A.A. Ramadan, Appl. Phys. A 92, 557–563 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    X. Huang, Z. Zhang, B. Song, Y. Deng, S. Liu, Y. Cui, G. Wang, C. Wong, J. Alloys Compd. 656, 663–666 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Lee, K. Yong, Korean J. Chem. Eng. 30, 1347–1358 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Adel, B.M. Fethi, B. Brahim, Appl. Phys. A 122, 1–7 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Li, Y. Liu, W. Zhang, W. Chen, P. Li, S. Ren, Appl. Phys. A 119, 1149–1154 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi Rapid Res. Lett. 10, 583–586 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L. Zhang, D. Zhuang, M. Zhao, Q. Gong, L. Guo, L. Ouyang, R. Sun, Y. Wei, S. Zhan, Appl. Surf. Sci. 413, 175–180 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, Prog. Photovoltaics Res. Appl. 18, 453–466 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.C. Lin, J.H. Ke, W.T. Yen, S.C. Liang, C.H. Wu, C.T. Chiang, Appl. Surf. Sci. 257, 4278–4284 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K.H. Liao, C.Y. Su, Y.T. Ding, H.S. Koo, Appl. Surf. Sci. 270, 139–144 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Menner, R. Wuerz, M. Powalla, Thin Solid Films 633, 13–17 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    P. Arnou, C.S. Cooper, A.V. Malkov, J.W. Bowers, J.M. Walls, Thin Solid Films 582, 31–34 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Y.E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A.R. Uhl, C.M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.P. Grand, V. Bermudez, A.N. Tiwari, Adv. Funct. Mater. 25, 12–27 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Singh, P. Prasher, K. Suganuma, Fabrication of dense CIGS film by mixing two types of nanoparticles for solar cell application. Nano Struct Nano Objects 11, 129–134 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, P. Thevenin, Appl. Phys. A 123, 379–387 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ahn, K. Kim, K. Yoon, Curr. Appl. Phys. 8, 766–769 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Park, J.G. Lee, D.Y. Kim, J.H. Lee, J.H. Yun, J. Gwak, Y.J. Eo, A. Cho, M.T. Swihart, S.S. Al-Deyab, S.J. Ahn, D.H. Kim, S.S. Yoon, Acta Mater. 123, 44–54 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Esmaeili-Zare, M. Behpour, M. Zahedifar, J. Mater. Sci. Mater. Electron. 27, 1645–1654 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Zhang, Y. Yang, D. Liu, S.C. Tse, W. Cao, Z. Feng, S. Chen, L. Qian, Energy Environ. Sci. 9, 3674–3681 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Eeles, P. Arnou, J.W. Bowers, J.M. Walls, S. Whitelegg, P. Kirkham, C. Allen, S. Stubbs, Z. Liu, O. Masala, C. Newman, N. Pickett, IEEE J. Photovoltaics 8, 288–292 (2018)CrossRefGoogle Scholar
  23. 23.
    E. Ghanbari, M. Zahedifar, O. Amiri, J. Mater. Sci. Mater. Electron. 29, 7068–7076 (2018)CrossRefGoogle Scholar
  24. 24.
    G. Voorwinden, R. Kniese, M. Powalla, Thin Solid Films. 431, 538–542 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    N.G. Dhere, Sol. Energy Mater. Sol. Cells. 90, 2181–2190 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Wei, S.B. Zhang, A. Zunger, Appl. Phys. Lett. 72, 3–6 (1998)Google Scholar
  27. 27.
    E. Burstein, Phys. Rev. 93, 632–633 (1954)ADSCrossRefGoogle Scholar
  28. 28.
    C. Persson, A. Zunger, Appl. Phys. Lett. 87, 0–3 (2005)CrossRefGoogle Scholar
  29. 29.
    D. Huang, C. Persson, J. Phys. Condens. Matter 24, 455503 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S.B. Zhang, S. Wei, A. Zunger, Phys. Rev. B 57, 9642–9656 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    G. Voorwinden, R. Kniese, M. Powalla, Thin Solid Films. 538, 431–432 (2003)Google Scholar
  32. 32.
    A.J. Zhou, D. Mei, X.G. Kong, X.H. Xu, L.D. Feng, X.Y. Dai, T. Gao, J.Z. Li, Thin Solid Films 520, 6068–6074 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    R. Caballero, C. Guillen, Appl. Surf. Sci. 238, 180–183 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    X. Peng, M. Zhao, D. Zhuang, R. Sun, L. Zhang, Y. Wei, X. Lv, Y. Wu, G. Ren, Vacuum 146, 282–286 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    S. Issue, Prog. Photovolt Res. Appl. 111, 93–111 (2004)Google Scholar
  36. 36.
    J. Ramanujam, U.P. Singh, Energy Environ. Sci. 10, 1306–1319 (2017)CrossRefGoogle Scholar
  37. 37.
    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z.Z. Sun, S.M. Huang, Prog. Photovolt. Res. Appl. 19, 160–164 (2011)CrossRefGoogle Scholar
  38. 38.
    Z. Baji, Z. Lábadi, G. Molnár, B. Pécz, A.L. Tóth, J. Tóth, A. Csik, I. Bársony, Vacuum 92, 44–51 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    A.H. Cheshme Khavar, A.R. Mahjoub, N. Taghavinia, Sol. Energy 157, 581–586 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    N. Kim, S. Oh, W. Lee, J. Korean Phys. Soc. 61, 1177–1180 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Frantz, R.Y. Bekele, V.Q. Nguyen, J.S. Sanghera, A. Bruce, S.V. Frolov, M. Cyrus, I.D. Aggarwal, Thin Solid Films. 519, 7763–7765 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Appl. Surf. Sci. 258, 5222–5229 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    D.B. Mitzi, M. Yuan, W. Liu, A. Kellock, S.J. Chey, A. Schrott, V. Deline, 33rd IEEE photovolatic specialists conference, pp 1–5 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Physics DepartmentUniversity of KashanKashanIran

Personalised recommendations