Applied Physics A

, 125:250 | Cite as

Preparation and characterization of perfluorine-SiO2 nanoparticles and superhydrophobic fluorosilicone/silica hybrid composite coating

  • Yaping WuEmail author
  • Xingeng Li
  • Chunxu Mi
  • Lijun Zong
  • Xiaoming Wang


The superhydrophobic fluorosilicone/silica (FS/SiO2) hybrid composite coating was easily fabricated by one-step blending method in this study, whose durable superhydrophobicity could be ensured by fluorosilicone resin (FS) matrix and perfluorine-SiO2 nanoparticles. The prepared perfluorine-SiO2 nanoparticles were detected using FESEM and FT-IR spectra, and the wettability and dispersion effects were studied. The surface morphologies and hydrophobicity of FS/SiO2 coating on glass plates were investigated by AFM and optical contact angle meter, while the adhesion, wear-resistance and chemical regent-resistance for FS/SiO2 superhydrophobic coating were also discussed. At last, the self-cleaning and anti-icing performances of prepared FS/SiO2 superhydrophobic coating were explored. It could be found that the FS coating doped with more than 22% SiO2 would exhibit superhydrophobicity. The water contact angle of the superhydrophobic FS coating could reach 161° and sliding angle 2° in the best condition. The superhydrophobic FS/SiO2 coating possesses relatively satisfied mechanical and chemical stability. Moreover, the prepared superhydrophobic FS/SiO2 hybrid composite coating provided an available selection of protecting surfaces against contamination and icing which validated the practicability.



This work was financially supported by (520626170025), the special funds for science and technology project in State Grid.


  1. 1.
    K. Liu, Y. Tian, L. Jiang, Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog. Mater Sci. 58, 503–564 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Reverdy, N. Belgacem, M.S. Moghaddam, M. Sundin, A. Swerin, J. Bras, One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids Surf. A 544, 152–158 (2018)CrossRefGoogle Scholar
  3. 3.
    E. Vazirinas, R. Jafari, G. Momen, Application of superhydrophobic coatings as a corrosion barrier: a review. Surf. Coat. Technol. 341, 40–56 (2018)CrossRefGoogle Scholar
  4. 4.
    E. Celia, T. Darmanin, E.T. Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci. 402, 1–18 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    L. Wang, J. Yang, Y. Zhu, Z.H. Li, T. Sheng, Y.M. Hu, D.Q. Yang, A study of the mechanical and chemical durability of ultra-ever dry superhydrophobic coating on low carbon steel surface. Colloids. Surf A Physicochem. Eng. Asp. 497, 16–27 (2016)CrossRefGoogle Scholar
  6. 6.
    A.V. Singh, A. Rahman, N.V.G. Sudhir Kumar, A.S. Aditi, M. Galluzzi, S. Bovio, S. Barozzi, E. Montani, D. Parazzoli, Bio-inspired approaches to design smart fabrics. Mater. Des. 36, 829–839 (2012)CrossRefGoogle Scholar
  7. 7.
    C.H. Xue, S.T. Jia, J. Zhang, J.Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater. 11, 1–15 (2010)CrossRefGoogle Scholar
  8. 8.
    C.Y. Peng, S.L. Xing, Z.Q. Yuan, J.Y. Xiao, C.Q. Wang, J.C. Zeng, Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 259, 764–768 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Asmone, M.Y.L. Chew, An investigation of superhydrophobic self-cleaning applications on external building façade systems in the tropics. J. Build. Eng. 17, 167–173 (2018)CrossRefGoogle Scholar
  10. 10.
    S.L. Zheng, C. Li, Q.T. Fu, W. Hu, T.F. Xiang, Q. Wang, M.P. Du, X.C. Liu, Z. Chen, Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications. Mater. Des. 93, 261–270 (2016)CrossRefGoogle Scholar
  11. 11.
    R.J. Liao, Z.P. Zuo, C. Guo, A.Y. Zhuang, Y. Yuan, X.T. Zhao, Y.Y. Zhang, Ice accretion on superhydrophobic insulators under freezing condition. Cold Reg. Sci. Technol. 112, 87–94 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Adithyavairavan, S. Subbiah, A morphological study on direct polymer cast micro-textured hydrophobic surfaces. Surf. Coat. Technol. 205, 4764–4770 (2011)CrossRefGoogle Scholar
  13. 13.
    H.Y. Guan, Z.W. Han, H.N. Cao, S.C. Niu, Z.H. Qian, J.F. Ye, L.Q. Ren, Characterization of multi-scale morphology and superhydrophobicity of water bamboo leaves and biomimetic polydimethylsiloxane (PDMS) replicas. J. Bionic Eng. 12, 624–633 (2015)CrossRefGoogle Scholar
  14. 14.
    Z.Q. Yuan, X. Wang, J.P. Bin, C.Y. Peng, S.L. Xing, A novel fabrication of a superhydrophobic surface with highly similar hierarchical structure of the lotus leaf on a copper sheet. Appl. Surf. Sci. 285, 205–210 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    I. Hejazi, B. Hajalizadeh, J. Seyfi, G.M.M. Sadeghi, Role of nanoparticles in phase separation and final morphology of superhydrophobic polypropylene/zinc oxide nanocomposite surfaces. Appl. Surf. Sci. 293, 116–123 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    X.H. Li, G.M. Chen, Y.M. Ma, L. Feng, H.Z. Zhao, L. Jiang, F.S. Wang, Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent–nonsolvent coating. Polymer 47, 506–509 (2006)CrossRefGoogle Scholar
  17. 17.
    T. Rezayi, M.H. Entezari, Achieving to a superhydrophobic glass with high transparency by a simple sol–gel-dip-coating method. Surf. Coat. Technol. 276, 557–564 (2015)CrossRefGoogle Scholar
  18. 18.
    R.V. Lakshmi, P. Bera, C. Anandan, B.J. Basu, Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings. Appl. Surf. Sci. 320, 780–786 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Periolatto, F. Ferrero, Cotton and polyester surface modification by methacrylic silane and fluorinated alkoxysilane via sol–gel and UV-curing coupled process. Surf. Coat. Technol. 271, 165–173 (2015)CrossRefGoogle Scholar
  20. 20.
    S.H. Yin, B. Zhu, Y.C. Liu, J. Yang, T.C. Kuang, Fabrication of superhydrophobic aluminum plate by surface etching and fluorosilane modification. Chem. Res. Chin. Univ. 28(5), 903–906 (2012)Google Scholar
  21. 21.
    Y. Liu, X.M. Yin, J.J. Zhang, Y.M. Wang, Z.W. Han, L.Q. Ren, Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate. Appl. Surf. Sci. 280, 845–849 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    K. Reinhold-López, A. Braeuer, B. Romann, N. Popovska-Leipertz, A. Leipertz, In situ Raman monitoring of the formation and growth of carbon nanotubes via chemical vapor deposition. Proc. Eng. 102, 190–200 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Rezaei, I. Manoucheri, R. Moradian, B. Pourabbas, One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem. Eng. J. 252, 11–16 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Zhang, S. Zhang, P. Gao, H. Ma, Q. Wei, Superhydrophobic hybrid films prepared from silica nanoparticles and ionic liquids via layer-by-layer self-assembly. Thin Solid Films 570, 27–32 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L.B. Feng, Y.H. Che, Y.H. Liu, X.H. Qiang, Y.P. Wang, Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method. Appl. Surf. Sci. 283, 367–374 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Lee, W. Hwang, Exploiting the silicon content of aluminum alloys to create a superhydrophobic surface using the sol–gel process. Mater. Lett. 168, 83–85 (2016)CrossRefGoogle Scholar
  27. 27.
    S.S. Jia, M. Liu, Y.Q. Wu, S. Luo, Y. Qing, H.B. Chen, Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Appl. Surf. Sci. 386, 115–124 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Liu, X.J. Liu, S.S. Latthe, L. Gao, S. An, S.S. Yoon, B.S. Liu, R.M. Xing, Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane. Appl. Surf. Sci. 351, 897–903 (2015)CrossRefGoogle Scholar
  29. 29.
    C.Y. Wang, M. Zhang, Y. Xu, S.L. Wang, F. Liu, M.L. Ma, D.L. Zang, Z.X. Gao, One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface. Adv. Powder Technol. 25, 530–535 (2014)CrossRefGoogle Scholar
  30. 30.
    Z.Q. Yuan, J.P. Bin, X. Wang, M.L. Wang, J. Huang, Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating. Surf. Coat. Technol. 254, 97–103 (2014)CrossRefGoogle Scholar
  31. 31.
    K.Q. Li, X.R. Zeng, H.Q. Li, X.J. Lai, H. Xie, Effects of calcination temperature on the microstructure and wetting behavior of superhydrophobic polydimethylsiloxane/silica coating. Colloids. Surf. A Physicochem. Eng. Asp. 445, 111–118 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, T. Geng, Y.G. Guo, Z.J. Zhang, P.Y. Zhang, Facile fabrication of stable superhydrophobic SiO2/polystyrene coating and separation of liquids with different surface tension. Chem. Eng. J. 231, 414–419 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.Q. Qing, C.N. Yang, N.N. Yu, Y. Shang, Y.Z. Sun, L.S. Wang, C.S. Liu, Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance. Chem. Eng. J. 290, 37–44 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Lu, S. Sathasivam, J.L. Song, C.R. Crick, C.J. Carmalt, I.P. Parkin, Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132–1135 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    B.J. Basu, A.K. Paranthaman, A simple method for the preparation of superhydrophobic PVDF–HMFS hybrid composite coatings. Appl. Surf. Sci. 255, 4479–4483 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Y.S. Zheng, Y. He, Y.Q. Qing, Z.H. Zhuo, Q. Mo, Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating. Appl. Surf. Sci. 258, 9859–9863 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    A.T. Abdulhussein, G.K. Kannarpady, A.B. Wright, A. Ghosh, A.S. Biris, Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces. Appl. Surf. Sci. 384, 311–332 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    K.Q. Li, X.R. Zeng, H.Q. Li, X.J. Lai, Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating. Appl. Surf. Sci. 298, 214–220 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    X.H. Wu, Q.T. Fu, D. Kumar, J.W.C. Ho, P. Kanhere, H.F. Zhou, Z. Chen, Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method. Mater. Des. 89, 1302–1309 (2016)CrossRefGoogle Scholar
  40. 40.
    H.B. Wang, E. Chen, X.B. Jia, L.J. Liang, Q. Wang, Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Appl. Surf. Sci. 349, 724–732 (2015)CrossRefGoogle Scholar
  41. 41.
    B. Qiao, Y. Liang, T.J. Wang, Y.P. Jiang, Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier. Appl. Surf. Sci. 364, 103–109 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    I.S. Bayer, On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 7(1), 12-1–12-24 (2017)CrossRefGoogle Scholar
  43. 43.
    S.A. Kulinich, M. Honda, A.L. Zhu, A.G. Rozhin, X.W. Du, The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter 11, 856–861 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    W. Posthumus, P.C.M.M. Magusin, J.C.M. Brokken-Zijp, A.H. A.Tinnemans, R.V.D. Linde, Surface modification of oxidic nanoparticles using3-methacryloxypropyltrimethoxysilane. J Colloid Interface Sci. 269, 109–116 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    V.M. Gun’ko, E.F. Voronin, E.M. Pakhlov, V.I. Zarko, V.V. Turov, N.V. Guzenko, R. Leboda, E. Chibowski, Features of fumed silica coverage with silanes having three or two groups reacting with the surface. Colloid Surf. A Physicochem. Eng. Asp. 166, 187–201 (2000)CrossRefGoogle Scholar
  46. 46.
    X.H. Xu, Z.Z. Zhang, W.M. Liu, Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. Colloids Surf. A Physicochem. Eng. Asp. 341, 21–26 (2009)CrossRefGoogle Scholar
  47. 47.
    D. Schondelmaier, S. Cramm, R. Klingeler, J. Morenzin, C. Zilkens, W. Eberhardt, Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 18, 6242–6245 (2002)CrossRefGoogle Scholar
  48. 48.
    D.F. Cao, Y.C. Zhang, Y. Li, X.Y. Shi, H.H. Gong, D. Feng, Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration. Mater. Sci. Eng. C 78, 333–340 (2017)CrossRefGoogle Scholar
  49. 49.
    Z.Z. Zhang, B. Ge, X.H. Men, Y. Li, Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning. Colloid Surf. A Physicochem. Eng. Asp. 490, 182–188 (2016)CrossRefGoogle Scholar
  50. 50.
    T. Nishino, M. Meguro, K. Nakamae, The lowest surface free energy based on-CF3 alignment. Langmuir 15, 4321–4323 (1999)CrossRefGoogle Scholar
  51. 51.
    A. Nakajima, K.Hashimoto Watanabe, T, Recent studies on super-hydrophobic films. Monatshefte für Chemie 132, 31–41 (2001)CrossRefGoogle Scholar
  52. 52.
    A. Milionisa, E. Loth, I.S. Bayer, Recent advances in the mechanical durability of superhydrophobic materials. Adv. Colloid Interface Sci. 229, 57–79 (2016)CrossRefGoogle Scholar
  53. 53.
    L.B. Boinovich, A.M. Emelyanenko, Anti-icing potential of superhydrophobic coatings. Focus article. Mendeleev Commun. 23, 3–10 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Grid Corporation Joint Laboratory of Advanced Electrical Engineering Material (SDEPC)State Grid Shandong Electric Power Research InstituteJinanChina

Personalised recommendations