Advertisement

Applied Physics A

, 125:253 | Cite as

Surfactant-free synthesis and experimental analysis of Mn-doped ZnO–glycerol nanofluids: an ultrasonic and thermal study

  • Alok Kumar Verma
  • Devraj SinghEmail author
  • Satyendra Singh
  • Raja Ram Yadav
Article
  • 2 Downloads

Abstract

A simplistic and environment-friendly approach has been used to prepare surfactant-free Mn-doped ZnO–glycerol nanofluids using high power sonicator. Thermal conductivity of the prepared nanofluids has been measured as a function of temperature and concentration. Maximum thermal conductivity enhancement ~ 32% at 40 °C has been observed with very low nanoparticles loading (2.0 vol% of Mn-doped ZnO-nanoparticles) which is significantly larger than the presently synthesized ZnO–glycerol nanofluids, and that of reported earlier on ZnO-ethylene glycol, and other glycerol-based nanofluids. Our present investigation shows that the thermal conductivity of nanofluids can be increased up to a significant level by changing other physical properties of incorporated nanoparticles than increasing concentration of nanoparticles to a large extent. Various physical phenomena including Brownian motion induced convection effect in conjunction with ballistic diffusion have been proposed for anomalous thermal conductivity enhancement. This may be valuable for various cooling applications and may open avenues for further exploration of efficient heat management with the help of nanosized doped metal oxide suspensions.

Notes

Acknowledgements

One of us (AKV) acknowledges the financial support provided by the University Grants Commission, India. We are grateful to Mr. Vimal Kumar Shukla for stimulated discussion. We are highly grateful to the reviewers for their constructive comments to enrich the quality of our manuscript.

References

  1. 1.
    H. Babar, H.M. Ali, Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 281, 598–633 (2019)Google Scholar
  2. 2.
    M.S. Abdel-wahed, Flow and heat transfer of a weak concentration micropolar-nanofluid over steady/unsteady-moving surface. Appl. Phys. A 123, 195 (2017)ADSGoogle Scholar
  3. 3.
    R.B. Ganvir, P.V. Walke, V.M. Kriplani, Heat transfer characteristics in nanofluids—a review. Renew. Sust. Energ. Rev. 75, 451–460 (2017)Google Scholar
  4. 4.
    R. Parashar, M. Wan, R.R. Yadav, A.C. Pandey, V. Parashar, Surfactant free synthesis of metal oxide (Co and Ni) nanoparticles and applications to heat propagation in nanofluids. Mater. Lett. 132, 440–443 (2014)Google Scholar
  5. 5.
    M. Izadi, M.M. Shahmardan, M. Norouzi, A.M. Rashidi, A. Behzadmehr, Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl. Phys. A 117(4), 1821–1833 (2014)ADSGoogle Scholar
  6. 6.
    H. Jiang, Q. Xu, C. Huang, L. Shi, The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl. Phys. A 118(1), 197–205 (2015)ADSGoogle Scholar
  7. 7.
    G. Xu, J. Fu, B. Dong, Y. Quan, G. Song, A novel method to measure thermal conductivity of nanofluids. Int. J. Heat Mass Transf. 130, 978–988 (2019)Google Scholar
  8. 8.
    R. Lenin, P.A. Joy, Role of base fluid on the thermal conductivity of oleic acid coated magnetite nanofluids. Colloids. Surf. A Physicochem. Eng. Asp. 529, 922–929 (2017)Google Scholar
  9. 9.
    A. Yasinskiy, J. Navas, T. Aguilar, R. Alcantara, J.J. Gallardo, A. Coronilla, E.L. Martín, D. Santos, C. Lorenzo, Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants. Renew. Energy 119, 809–819 (2018)Google Scholar
  10. 10.
    P.B. Maheshwary, C.C. Handa, K.R. Nemade, A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluids. Appl. Therm. Eng.‎ 119, 79–88 (2017)Google Scholar
  11. 11.
    M.H. Ahmadi, A. Mirlohi, M.A. Nazari, R. Ghasempour, A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)Google Scholar
  12. 12.
    H. Jiang, Q. Xu, C. Huang, L. Shi, Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles. Particuology 22, 95–99 (2015)Google Scholar
  13. 13.
    A. Alirezaie, M.H. Hajmohammad, M.R.H. Ahangar, M.H. Esfe, Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Appl. Therm. Eng. 128, 373–380 (2018)Google Scholar
  14. 14.
    T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng.‎ 30(14–15), 2213–2218 (2010)Google Scholar
  15. 15.
    H.J. Kim, S.H. Lee, J.H. Lee, S.P. Jang, Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy 90(2), 1290–1297 (2015)Google Scholar
  16. 16.
    J. Jeong, C. Li, Y. Kwon, J. Lee, S.H. Kim, R. Yun, Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int. J. Refrig. 36(8), 2233–2241 (2013)Google Scholar
  17. 17.
    B. Buonomo, O. Manca, L. Marinelli, S. Nardini, Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng.‎ 91, 181–190 (2015)Google Scholar
  18. 18.
    A. Asadi, M. Asadi, M. Siahmargoi, T. Asadi, M.G. Andarati, The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int. J. Heat Mass Transf. 108, 191–198 (2017)Google Scholar
  19. 19.
    J. Hong, D. Kim, Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim. Acta 542, 28–32 (2012)Google Scholar
  20. 20.
    H. Zerradi, S. Mizani, H. Loulijat, A. Dezairi, S. Ouaskit, Population balance equation model to predict the effects of aggregation kinetics on the thermal conductivity of nanofluids. J. Mol. Liq. 218, 373–383 (2016)Google Scholar
  21. 21.
    C.Y. Tso, S.C. Fu, C.Y.H. Chao, A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 70, 202–214 (2014)Google Scholar
  22. 22.
    S.P. Jang, S.U.S. Choi, Effects of various parameters on nanofluid thermal conductivity. J. Heat Transf. 129(5), 617–623 (2007)Google Scholar
  23. 23.
    M. Cannio, C. Ponzoni, M.L. Gualtieri, E. Lugli, C. Leonelli, M. Romagnoli, Stabilization and thermal conductivity of aqueous magnetite nanofluid from continuous flows hydrothermal microwave synthesis. Mater. Lett. 173, 195–198 (2016)Google Scholar
  24. 24.
    K.Y. Leong, I. Razali, K.Z.K. Ahmad, H.C. Ong, M.J. Ghazali, M.R.A. Rahman, Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: an experimental approach. Int. J. Heat Mass Transf. 90, 23–28 (2018)Google Scholar
  25. 25.
    M. Sharifpur, N. Tshimanga, J.P. Meyer, O. Manca, Experimental investigation and model development for thermal conductivity of α-Al2O3-glycerol nanofluids. Int. Commun. Heat Mass Tranf. 85, 12–22 (2017)Google Scholar
  26. 26.
    H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 88, 363–368 (2015)Google Scholar
  27. 27.
    O.A. Alawi, N.A.C. Sidik, H.W. Xian, T.H. Kean, S.N. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf. 116, 1314–1325 (2018)Google Scholar
  28. 28.
    D. Das, A.K. Datta, D.V. Kumbhakar, B. Ghosh, A. Pramanik, S. Gupta, Conditional optimisation of wet chemical synthesis for pioneered ZnO nanostructures. Nano Struct. Nano Obj. 9, 26–30 (2017)Google Scholar
  29. 29.
    P.M. Perillo, M.N. Atia, C-doped ZnO nanorods for photocatalytic degradation of p-aminobenzoic acid under sunlight. Nano Struct. Nano Objects 10, 125–130 (2017)Google Scholar
  30. 30.
    F.M. Li, G. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, W.I. Milne, Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron Dev. 55(11), 3001–3011 (2008)ADSGoogle Scholar
  31. 31.
    B. Munkhbayara, M.R. Tanshena, J. Jeouna, H. Chungb, H. Jeong, Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39(6), 6415–6425 (2013)Google Scholar
  32. 32.
    P.S. Epstein, R.R. Carhart, The absorption of sound in suspensions and emulsions. I. Waterfog in air. J. Acoust. Soc. Am. 25(3), 553–565 (1953)ADSGoogle Scholar
  33. 33.
    K. Tanaka, K. Fukui, S. Murai, K. Fujita, Mechanical milling-induced room-temperature ferromagnetic phase in MnO2–ZnO system. Appl. Phys. Lett. 89(5), 052501 (2006)ADSGoogle Scholar
  34. 34.
    K.P. Bhatti, S. Chaudhary, D.K. Pandya, S.C. Kashyap, On the room-temperature ferromagnetism in (ZnO)0.98(MnO2)0.02. Solid State Commun. 136(7), 384–388 (2005)ADSGoogle Scholar
  35. 35.
    S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys. 7, 604–610 (2017)ADSGoogle Scholar
  36. 36.
    P. Sharmaa, A. Guptab, F.J. Owensc, A. Inoued, K.V. Rao, Room temperature spintronic material—Mn-doped ZnO revisited. ‎J. Magn. Magn. Mater. 282(1), 115–121 (2004)ADSGoogle Scholar
  37. 37.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32(6), 751–767 (1976)Google Scholar
  38. 38.
    B. Babić-Stojić, D. Milivojević, J. Blanuša, V. Spasojević, N. Bibić, B. Simonović, D. Arandelović, Ferromagnetic properties of the Zn–Mn–O system. J. Phys. Condens. Matter 20(23), 235217 (2008)ADSGoogle Scholar
  39. 39.
    B.H. Soni, M.P. Deshpande, S.V. Bhatt, S.H. Chaki, H. Kaheria, Study on antimicrobial activity of undoped and Mn doped ZnO nanoparticles synthesized by microwave irradiation. Arch. Appl. Sci. Res. 3(6), 173–179 (2011)Google Scholar
  40. 40.
    P. Kumar, B.K. Singh, B.N. Pal, P.C. Pandey, Correlation between structural, optical and magnetic propertiesof Mn-doped ZnO. Appl. Phys. A 122, 740 (2016)ADSGoogle Scholar
  41. 41.
    A. Kalita, M.P.C. Kalita, Microstructural, optical, magnetic and photocatalytic properties of Mn doped ZnO nanocrystals of different sizes. Phys. B Condens. Matter. 552(1), 30–46 (2019)ADSGoogle Scholar
  42. 42.
    A.G. Ali, F.B. Dejene, H.C. Swart, Effect of Mn doping on the structural and optical properties of sol–gel derived ZnO nanoparticles. Cent. Eur. J. Phys. 10(2), 478–484 (2012)Google Scholar
  43. 43.
    K. Samanta, S. Dussan, R.S. Katiyar, P. Bhattacharya, Structural and optical properties of nanocrystalline Zn1−xMnxO. Appl. Phys. Lett. 90(3), 261903 (2007)ADSGoogle Scholar
  44. 44.
    S.H. Kim, S.R. Choi, D. Kim, Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J. Heat Transf. 129, 298–307 (2007)Google Scholar
  45. 45.
    W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Thermochim. Acta 491(1–2), 92–96 (2009)Google Scholar
  46. 46.
    K.S. Suganthi, V.L. Vinodhan, K.S. Rajan, Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl. Energy 135, 548–559 (2014)Google Scholar
  47. 47.
    M. Kole, T.K. Dey, Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids. Thermochim. Acta 535, 58–65 (2012)Google Scholar
  48. 48.
    W.Chen, L. Zhang, Y. Du, B. Huang, Viscosity and diffusivity in melts: from unary to multicomponent systems. ‎Philos. Mag. 94(14), 1552–1577 (2014)ADSGoogle Scholar
  49. 49.
    D.H. Kumar, H.E. Patel, V.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Model for heat conduction in nanofluids. Phys. Rev. Lett. 93(14), 144301–144304 (2004)ADSGoogle Scholar
  50. 50.
    C. Wu, T.J. Cho, J. Xu, D. Lee, B. Yang, M.R. Zachariah, Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys. Rev. E81(1), 011406 (2010)ADSGoogle Scholar
  51. 51.
    D. Toghraie, V.A. Chaharsoghi, M. Afrand, Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluids. J. Therm. Anal. Calorim. 125(1), 527–535 (2016)Google Scholar
  52. 52.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)ADSGoogle Scholar
  53. 53.
    G. Chen, Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86(11), 2297–2300 (2001)ADSGoogle Scholar
  54. 54.
    D.K. Pandey, D. Singh, R.R. Yadav, Ultrasonic wave propagation in III group nitrides. Appl. Acoust. 68(7), 766–777 (2007)Google Scholar
  55. 55.
    R.R. Yadav, D. Singh, Behaviour of ultrasonic attenuation in intermetallics. Intermetallics 9(3), 189–194 (2001)MathSciNetGoogle Scholar
  56. 56.
    D. Singh, D.K. Pandey, D.K. Singh, R.R. Yadav, Propagation of ultrasonic waves in neptunium monochalcogenides. Appl. Acoust. 72(10), 737–741 (2011)Google Scholar
  57. 57.
    C. Tripathy, D. Singh, R. Paikaray, Behaviour of elastic and ultrasonic properties of curium monopnictides. Can. J. Phys. 96(5), 513–518 (2018)ADSGoogle Scholar
  58. 58.
    A.P. Nagvenkar, I. Perelshtein, A. Gedanken, Doping effect on the thermal conductivity of metal oxide nanofluids: insight and mechanistic investigation. J. Phys. Chem. C 121(47), 26551–26557 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alok Kumar Verma
    • 1
  • Devraj Singh
    • 2
    Email author
  • Satyendra Singh
    • 3
  • Raja Ram Yadav
    • 1
  1. 1.Department of PhysicsUniversity of AllahabadAllahabadIndia
  2. 2.Amity Institute of Applied SciencesAmity University Uttar PradeshNoidaIndia
  3. 3.Department of PhysicsMaharana Pratap Government Post Graduate CollegeHardoiIndia

Personalised recommendations