Advertisement

Applied Physics A

, 125:254 | Cite as

Enhancement of second harmonic generation in MnF2/graphene sandwich structure

  • Bai Lu
  • Sheng Zhou
  • Yuling Song
  • Shufang FuEmail author
Article

Abstract

We propose an efficient method for increasing the second harmonic (SH) generation by embedding the graphene (Gr) in SiO2/MnF2/ZnF2 sandwich structure. The external magnetic field is perpendicular to the surface of MnF2/Gr sandwich. Two cases where the Gr layer is put above or below the MnF2 film are compared. For the MnF2/Gr case, the numerical simulation results show that the SH outputs obviously increase one order magnitude compared with the MnF2 sandwich without the Gr layer. In addition, the position and intensity of the SH outputs can be easily controlled by adjusting the external magnetic field strength and gate voltage. However, for the Gr/MnF2 case, the SH outputs rapidly decrease almost near to zero. The electric field distributions show that, in this case, the light intensity in the MnF2 film is further weakened, which causes that SH generations cannot be effectively excited. Besides, the effect of the magnetic field and the Fermi energy on the SH outputs are also studied.

Notes

Acknowledgements

Postgraduate Innovation Fund of Harbin Normal University with Grant no. HSDSSCX2018-79.

References

  1. 1.
    K. Abraha, D.R. Tilley, Theory of far infrared properties of magnetic surfaces, films and superlattices. Surf. Scci. Rep. 24, 125–222 (1996)Google Scholar
  2. 2.
    S.C. Lim, J. Osman, D.R. Tilley, Calculation of nonlinear magnetic susceptibility tensors for an uniaxial antiferromagnet. J. Phys. D Appl. Phys. 33, 2899–2910 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    N.S. Almeida, D.L. Mills, Nonlinear infrared response of antiferromagnets. Phys. Rev. B 36, 2015–2023 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    L. Kahn, N.S. Almeida, D.L. Mills, Nonlinear optical response of antiferromagnetic superlattices: multi-stability and soliton trains. Phys. Rev. B 37, 8072–8081 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    A.D. Boardman, S.A. Nikitov, N.A. Waby, Existence of spin-wave solitons in an antiferromagnetic film. Phys. Rev. B 48, 13602–13606 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    M. Fiebig, D. Frohlich, B.B. Krichevtsov, R.V. Pisarev, Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    S.-F. Fu, S. Zhou, H. Liang, X.-Z. Wang, Phase-matched sum frequency generation of antiferromagnetic film in THz frequency field. J. Magn. Magn. Mater. 346, 178–185 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Sun, S.-F. Fu, S. Zhou, X.-Z. Wang, Numerical simulation of optical bi-stability in antiferromagnetic sandwich structure. J. Magn. Magn. Mater. 324, 183–189 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Zhou, X.-Z. Wang, Method of enhancing second-harmonic generation of antiferromagnetic film. J. Opt. Soc. Am. B 25, 1639–1644 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Zhou, H. Li, S.-F. Fu, X.-Z. Wang, Second harmonic generation from antiferromagnetic film in one-dimensional photonic crystals. Phys. Rev. B 80, 205409 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Rzhevsky, B.B. Krichevtsov, D.E. Bürgler, C.M. Schneider, Interfacial magnetization in exchange-coupled Fe/Cr/Fe structures investigated by second harmonic generation. Phys. Rev. B 75, 144416 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M. Fiebig, D. Frohlich, T. Lottermoser, R.V. Pisarev, H.J. Weber, Second harmonic generation in the centro symmetric antiferromagnet NiO. Phys. Rev. Lett. 87, 137202–137204 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M. Fiebig, V.V. Pavlov, R.V. Pisarev, Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. J. Opt. Soc. Am. B 22, 96–118 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhou, Magneto-optical nonlinearity of antiferrromagnet/dielectric systems, Ph.D. dissertation. (Harbin University of Science and Technology, Harbin, 2010)Google Scholar
  15. 15.
    K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    X. Yan, T. Wang, X. Han, S. Xiao, Y. Zhu, Y. Wang, High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12, 1449–1455 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Zhou, Y. Gao, S.-F. Fu, Giant Faraday rotation in graphene/MnF2 photonic crystals. Eur. Phys. J. B 91, 41 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    H. Da, G. Liang, Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene. Appl. Phys. Lett. 98, 261915 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gao, S. Zhou, S.-F. Fu, Effect of graphene on far-infrared transmission and absorption of FeF2 photonic crystals. Phys. B 523, 6–12 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22, 22743–22752 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S.V. Kryuchkov, E. I.Kukhar, Influence of the magnetic field on the graphene conductivity. J. Mod. Phys. 3, 994–1001 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Magnin, H.T. Diep, Monte Carlo study of magnetic resistivity in semiconducting MnTe. Phys. Rev. B 85, 184413 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B. Hennion, W. Szuszkiewicz, E. Dynowska, E. Janik, T. Wojtowicz, Spin-wave measurements on MBE-grown zinc-blende structure MnTe by inelastic neutron scattering. Phys. Rev. B 66, 224426 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    W. Szuszkiewicz, E. Dynowska, B. Witkowska, B. Hennion, Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering. Phys. Rev. B 73, 104403 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic EngineeringHarbin Normal UniversityHarbinChina

Personalised recommendations