Advertisement

Applied Physics A

, 125:234 | Cite as

Structure and mechanical properties of macroporous zirconia ceramic fabricated from baddeleyite using spherification technique

  • Vyacheslav V. RodaevEmail author
  • Vladimir M. Vasyukov
  • Andrey O. Zhigachev
  • Viktor V. Korenkov
  • Yuri I. Golovin
Rapid communication
  • 43 Downloads

Abstract

The spherification method was adapted to macroporous tetragonal polycrystalline zirconia ceramic fabrication from baddeleyite. Dependences of the material microstructure, its porosity, phase composition and mechanical properties on the sintering temperature were investigated. The opportunity for controlling the porosity and mechanical properties of produced spherical macroporous zirconia ceramic via the sintering temperature variation was revealed. Beads sintered at 1100 °С are characterized by the optimal combination of porosity, hardness, Young’s modulus and breaking force.

Notes

Acknowledgements

The reported study was funded by RFBR according to the research project № 18-29-12015.

References

  1. 1.
    P.S. Liu, G.F. Chen, Porous Materials: Processing and Applications (Elsevier-Health Sciences Division, Woburn, 2014)Google Scholar
  2. 2.
    E.C. Hammel, O.L.-R. Ighodaro, O.I. Okoli, Ceram. Int. 40, 15351 (2014)CrossRefGoogle Scholar
  3. 3.
    T. Ohji, M. Fukushima, Int. Mater. Rev. 57, 115 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Gautam, J. Joyner, A. Gautam, J. Rao, R. Vajtai, Dalton Trans. 45, 19194 (2016)CrossRefGoogle Scholar
  5. 5.
    O.S.A. El-Ghany, A.H. Sherief, Future Dent. J. 2, 55 (2016)CrossRefGoogle Scholar
  6. 6.
    V.V. Rodaev, A.O. Zhigachev, V.V. Korenkov, Y.I. Golovin, Mater. Sci. Eng. A 730, 363 (2018)CrossRefGoogle Scholar
  7. 7.
    C.J.E. Santos, T.-S. Wei, B. Cho, W.M. Kriven, J. Am. Ceram. Soc. 96, 3379 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Akhondi, E. Taheri-Nassaj, A. Taavoni-Gilan, J. Alloy. Compd. 484, 452 (2009)CrossRefGoogle Scholar
  9. 9.
    A.O. Zhigachev, A.V. Umrikhin, Y.I. Golovin, Ceram. Int. 41, 13804 (2015)CrossRefGoogle Scholar
  10. 10.
    Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando, T. Ohji, J. Am. Ceram. Soc. 85, 1961 (2002)CrossRefGoogle Scholar
  11. 11.
    L.F. Hu, C.-A. Wang, Ceram. Int. 36, 1697 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Samson, M. Śliwa, R.P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J.-F. Paul, M. Ruggiero-Mikołajczyk, R. Grabowski, J. Słoczyński, ACS Catal. 4, 3730 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Takano, H. Shinomiya, K. Izumiya, N. Kumagai, H. Habazaki, K. Hashimoto, Int. J. Hydrog. Energy 40, 8347 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vyacheslav V. Rodaev
    • 1
    Email author
  • Vladimir M. Vasyukov
    • 1
  • Andrey O. Zhigachev
    • 1
  • Viktor V. Korenkov
    • 1
  • Yuri I. Golovin
    • 1
  1. 1.Institute for Nanotechnology and NanomaterialsTambov State UniversityTambovRussia

Personalised recommendations