Advertisement

Applied Physics A

, 125:307 | Cite as

Use of beam-shaping optics for wafer-scaled nanopatterning in laser interference lithography

  • Dominik Weber
  • Robert Heimburger
  • Dirk Hildebrand
  • Toni Junghans
  • Gianina Schondelmaier
  • Christian Walther
  • Daniel SchondelmaierEmail author
Article
  • 26 Downloads

Abstract

Laser interference lithography is a widely used technology for large-area patterning of surfaces on the micro- and nanoscale. It is mostly used for research purposes due to the limited area that can be uniformly patterned due to the Gaussian intensity profile of the laser. In the scope of this work, the lithography system was extended by a freeform refractive glass which provided a spatially uniform energy distribution for a homogenous structuring process. The energy variation of the introduced light was reduced to 2.6% for the exposed area (4 × 9 cm), which is one magnitude lower than the energy variation of a Gaussian beam. With the refractive beam shaper, it was possible to produce a uniform nanopattern with an absolute linewidth variation of 7 nm over an area of 4 × 9 cm2. The structurable area is limited by the mirror size of the Lloyd’s mirror device. The demonstrated LIL system was also able to generate variable light fields from Gaussian to flat-top as well as inverse Gaussian profiles. This paper demonstrates nanopatterning of negative resist with a square homogenous output profile of the beam shaper. The square shape of the beam profile gives the opportunity to efficiently structure substrates with a square shape. Apart from standard silicon-based photolithographic processes, this technique is also attractive for nanopatterning of organic light-emitting diodes on glass or graduated grid structures like polarizers. Consequently, the advantages of the LIL fabrication (high-throughput and low-cost fabrication) are extended by the opportunity to scale the single-exposure process to large areas with only small variations in the detail.

Notes

Acknowledgements

We gratefully acknowledge Dr. M. Gerngroß and M Schirmer from Allresist GmbH for discussion and the provision of the photoresist and the chemical products. We also want to thank TOPAG Lasertechnik GmbH and U. Rädel for the technical assistance and discussion in terms of the beam shaper. For general discussions and technical assistance, we want to thank Professor J. Grimm and J. Saupe as well as Professor W. Zahn for the support with analytical equipment.

References

  1. 1.
    Y.-J. Hung, S.-L. Lee, Y.-T. Pan, B.J. Thibeault, L.A. Coldren, J. Vac. Sci. Technol. B (2010).  https://doi.org/10.1116/1.3491185 CrossRefGoogle Scholar
  2. 2.
    S.-F. Leung, Q. Zhang, F. Xiu, D. Yu, J.C. Ho, D. Li, Z. Fan, J. Vac. Sci. Technol. B (2014).  https://doi.org/10.1021/jz500306f CrossRefGoogle Scholar
  3. 3.
    L. Prodan et al. Nanotechnology (2004).  https://doi.org/10.1088/0957-4484/15/5/040 CrossRefGoogle Scholar
  4. 4.
    J. Buencuerpo, L. Torne, R. Alvaro, J.M. Llorens, M.L. Dotor, J.M. Ripalda, AIP Conf. Proc. (2017).  https://doi.org/10.1063/1.5001413 CrossRefGoogle Scholar
  5. 5.
    M. Bieda, M. Siebold, A.F. Lasagni, Appl. Surf. Sci. (2016).  https://doi.org/10.1016/j.apsusc.2016.06.100 CrossRefGoogle Scholar
  6. 6.
    T.B. O’Reilly, H.I. Smith, J. Vac. Sci. Technol. B (2008).  https://doi.org/10.1116/1.3013391 CrossRefGoogle Scholar
  7. 7.
    K.-H. Kim, Y.-C. Jeong, Opt. Express (2018).  https://doi.org/10.1364/OE.26.005711 CrossRefGoogle Scholar
  8. 8.
    P. Lalanne, J. Hazart, P. Chavel, C. Edmond, L. Huguette, J. Opt. A Pure Appl. Opt. 1, 215 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    M. Stroisch, T. Woggon, U. Lemmer, G. Bastian, G. Violakis, S. Pissadakis, Opt. Express (2007).  https://doi.org/10.1364/OE.15.003968 CrossRefGoogle Scholar
  10. 10.
    T. Ubukata, T. Isoshima, M. Hara, Adv. Mater. (2005).  https://doi.org/10.1002/adma.200402080 CrossRefGoogle Scholar
  11. 11.
    C. Ye, K.Y. Wong, Y. He, X. Wang, Opt. Express 15, 936–944 (2007)Google Scholar
  12. 12.
    A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M.J. Withford, A. Fuerbach, S.M. Olaizola, Opt. Mater. Express (2012).  https://doi.org/10.1364/OME.2.001571 CrossRefGoogle Scholar
  13. 13.
    Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, T.-C. Kao, J. Vac. Sci. Technol. B (2017).  https://doi.org/10.1116/1.4980134 CrossRefGoogle Scholar
  14. 14.
    M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, U. Lemmer, Opt. Express (2010).  https://doi.org/10.1364/OE.18.005890 CrossRefGoogle Scholar
  15. 15.
    S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, U. Lemmer, Appl. Phys. B (2009).  https://doi.org/10.1007/s00340-009-3789-0 CrossRefGoogle Scholar
  16. 16.
    S. Balslev, T. Rasmussen, P. Shi, A. Kristensen, J. Micromech. Microeng. (2005).  https://doi.org/10.1088/0960-1317/15/12/030 CrossRefGoogle Scholar
  17. 17.
    M. Fina, D. Liu, L. Ren, S.S. Mao, Appl. Phys. A (2011).  https://doi.org/10.1007/s00339-011-6616-5 CrossRefGoogle Scholar
  18. 18.
    E. Menard, M.A. Meitl, Y. Sun, J.-U. Park, D.J.-L. Shir, Y.-S. Nam, S. Jeon, J.A. Rogers, Chem. Rev. (2007).  https://doi.org/10.1021/cr050139y CrossRefGoogle Scholar
  19. 19.
    A.M. Adawi, R. Kullock, J.L. Turner, C. Vasilev, D.G. Lidzey, A. Tahraoui, P.W. Fry, D. Gibson, E. Smith, C. Foden, M. Roberts, F. Qureshi, N. Athanassopoulou, Org. Electron. (2006).  https://doi.org/10.1016/j.orgel.2006.02.002 CrossRefGoogle Scholar
  20. 20.
    A. Dodabalapur, L.J. Rothberg, R.H. Jordan, T.M. Miller, R.E. Slusher, J.M. Phillips, J. Appl. Phys. (1996).  https://doi.org/10.1063/1.363768 CrossRefGoogle Scholar
  21. 21.
    N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. (1993).  https://doi.org/10.1063/1.110582 CrossRefGoogle Scholar
  22. 22.
    C.-H. Tsai, L.-D. Liao, Y.-S. Luo, P.C.-P. Chao, E.-C. Chen, H.-F. Meng, W.-D. Chen, S.-K. Lin, C.-T. Lin, Microelectron. Eng. (2010).  https://doi.org/10.1016/j.mee.2009.12.041 CrossRefGoogle Scholar
  23. 23.
    L. Petti, M. Rippa, R. Capasso, G. Nenna, A. Mauro, V. De Girolamo Del, A.P. La Ferrara, C. Madathil, Minarini, J. Eur. Opt. Soc. Rapid Publ. (2013).  https://doi.org/10.2971/jeos.2013.13002 CrossRefGoogle Scholar
  24. 24.
    L. Petti, M. Rippa, R. Capasso, G. Nenna, A.G. de Del Mauro, M.G. Maglione, C. Minarini, Nanotechnology (2013).  https://doi.org/10.1088/0957-4484/24/31/315206 CrossRefGoogle Scholar
  25. 25.
    S. Noda, M. Fujita, T. Asano, Nat. Photon. (2007).  https://doi.org/10.1038/nphoton.2007.141 CrossRefGoogle Scholar
  26. 26.
    J.H. Hwang, H.J. Lee, Y.S. Shim, C.H. Park, S.-G. Jung, K.N. Kim, Y.W. Park, B.-K. Ju, Nanoscale (2015).  https://doi.org/10.1039/c4nr06547f ADSCrossRefGoogle Scholar
  27. 27.
    R. Yan, Q. Wang, Optoelectr. Lett. (2006).  https://doi.org/10.1007/BF03034018 CrossRefGoogle Scholar
  28. 28.
    Y.-J. Hung, P.-C. Chang, Y.-N. Lin, J.-J. Lin, J. Vac. Sci. Technol. B (2016).  https://doi.org/10.1116/1.4955172 CrossRefGoogle Scholar
  29. 29.
    M. Farhoud, J. Ferrera, A.J. Lochtefeld, T.E. Murphy, M.L. Schattenburg, J. Carter, C.A. Ross, H.I. Smith, J. Vac. Sci. Technol. B (1999).  https://doi.org/10.1116/1.590976 CrossRefGoogle Scholar
  30. 30.
    H. Korre, C.P. Fucetola, J.A. Johnson, K.K. Berggren, J. Vac. Sci. Technol. B (2010).  https://doi.org/10.1116/1.3504498 CrossRefGoogle Scholar
  31. 31.
    C.P. Fucetola, H. Korre, K.K. Berggren, J. Vac. Sci. Technol. B (2009).  https://doi.org/10.1116/1.3245990 CrossRefGoogle Scholar
  32. 32.
    T.B. O’Reilly, H.I. Smith, J. Vac. Sci. Technol. B (2008).  https://doi.org/10.1116/1.2825169 CrossRefGoogle Scholar
  33. 33.
    A.S. Kewitsch, A. Yariv, Appl. Phys. Lett. (1996).  https://doi.org/10.1063/1.116411 CrossRefGoogle Scholar
  34. 34.
    M. Zhang, Master Thesis, Auburn University, 05 (2013)Google Scholar
  35. 35.
    Y.-K. Yang, Y.-X. Wu, T.-H. Lin, C.-W. Yu, C.-C. Fu, In SPIE LASE, San Francisco, California, United States, Saturday 13 February 2016 (SPIE2016), 97360Y (2016)Google Scholar
  36. 36.
    M.A. de Araújo, R. Silva, E. de Lima, D.P. Pereira, P.C. de Oliveira, Appl. Opt. (2009).  https://doi.org/10.1364/AO.48.000393 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dominik Weber
    • 1
  • Robert Heimburger
    • 1
  • Dirk Hildebrand
    • 1
  • Toni Junghans
    • 1
  • Gianina Schondelmaier
    • 1
  • Christian Walther
    • 1
  • Daniel Schondelmaier
    • 1
    Email author
  1. 1.University of Applied Science ZwickauZwickauGermany

Personalised recommendations