Applied Physics A

, 125:245 | Cite as

The remarkable morphology regulatory effect of NH4+ ions on TiO2 nanorod arrays and their application in dye-sensitized solar cells

  • Kaijing Li
  • Qiong SunEmail author
  • Songhao Wu
  • Di You
  • Tao Zang
  • Liyan Yu
  • Lina SuiEmail author
  • Lifeng DongEmail author


Nitrogen doping is often used to expand the response range of wide-bandgap semiconductors to improve their photoelectrical properties. Unique morphology regulatory effect of NH4+ ions on one-dimensional TiO2 nanorod arrays (TNAs) is proved in this research for the first time, but nitrogen-doping effect is hardly detected. Once NH4Cl is added, the growth of TNAs is greatly promoted especially in radial direction, but little amount of nitrogen from NH4+ ions can enter the modified TNAs (N-TNAs). Furthermore, the bandgap energy of N-TNAs is almost unchanged compared with TNAs, meaning that trace nitrogen doping does not affect response ability to irradiation. When fabricated into dye-sensitized solar cells (DSSCs) with N-TNAs, the optimal photoelectrical conversion efficiency (3.16%) is nearly twice that with TNAs (1.62%). It is worth noting that the increased efficiency mainly results from the photoinduced current but not voltage. Second, the change of conversion efficiency is related to nanorod length. In summary, the improvement of photoelectrical property is caused by the directional growth of nanorods, which results from the addition of NH4+ ions as an effective structure regulatory agent.



This work was partially supported by the National Natural Science Foundation of China (21776147, 21606140, and 61604086), the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201707) at Fuzhou University, the Department of Science and Technology of Shandong Province (2016GGX104010 and ZR2018BB066), and the Department of Education of Shandong Province (J16LA14 and J17KA013). L. F. Dong also thanks financial support from the Malmstrom Endowment Fund of Hamline University.


  1. 1.
    B. O’regan, M. Grätzel, Nature 353, 737 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    M. Grätzel, J. Photochem. Photobiol. A 164, 3 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Li, J. Wang, H. Sun, B. Wei, ACS Appl. Mater. Interfaces 10, 11580 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  6. 6.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  7. 7.
    Y. Li, J. Wang, X. Liu, C. Shen, K. Xie, B. Wei, ACS Appl. Mater. Interfaces 9, 31691 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Gao, Y. Feng, B. Zhang, F. Zhang, X. Peng, L. Liu, S. Meng, RSC Adv. 4, 16992 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, B. Zhang, Z. Zuo, M. Wang, Y. Shen, J. Mater. Chem. A 3, 10020 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Shogh, R. Mohammadpour, N. Taghavinia, Mater. Res. Bull. 72, 64 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, B. Zhang, Y. Feng, Res. Chem. Intermediat. 42, 6705 (2016)CrossRefGoogle Scholar
  12. 12.
    W. Guo, Y. Shen, L. Wu, Y. Gao, T. Ma, J. Phys. Chem. C 115, 21494 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Şennik, Z. Colak, N. Kılınç, Z.Z. Öztürk, Int. J. Hydrogen Energy 35, 4420 (2010)CrossRefGoogle Scholar
  14. 14.
    O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotechnol. 4, 592 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Small 5, 104 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, Chem. Mater. 21, 1198 (2009)CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13, 14 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. Tang, A.J. Cowan, J.R. Durrant, D.R. Klug, J. Phys. Chem. C 115, 3143 (2011)CrossRefGoogle Scholar
  19. 19.
    Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, J. Mater. Chem. 21, 9079 (2011)CrossRefGoogle Scholar
  20. 20.
    S.W. Lee, K.S. Ahn, K. Zhu, N.R. Neale, A.J. Frank, J. Phys. Chem. C 116, 21285 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Cui, L. Zhang, K. Lv, G. Zhou, Z.S. Wang, J. Mater. Chem. A 3, 4477 (2015)CrossRefGoogle Scholar
  22. 22.
    W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, J. Phys. Chem. C 118, 16426 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Ding, L.E. Mo, L. Tao, Y.M. Ma, L.H. Hu, Y. Huang, S.Y. Dai, J. Power Sources 272, 1046 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J. Lin, Y.U. Heo, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, Electrochim. Acta 153, 393 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Asgari Moghaddam, S. Jafari, M.R. Mohammadi, New J. Chem. 41, 9453 (2017)CrossRefGoogle Scholar
  26. 26.
    K.S. Dhonde, M. Dhonde, V.V.S. Murty, Sol. Energy 173, 551 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, S. Dai, J. Phys. Chem. C 114, 1627 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Li, Q. Sun, S. Ma, M. Zhang, Q. Liu, L. Dong, ECS J. Solid State Sci. 4, Q17 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, Nature 485, 486 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Q. Sun, Y. Hong, Q. Liu, M. Zhang, L. Yu, L. Dong, Mater. Res. Express 4, 075023 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Dong, Y. Zhao, Y. Chen, Y. Feng, M. Zhu, C. Ju, J. Xu, J. Mater. Sci. 53, 8921 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    P.F. Zeni, D.P.D. Santos, R.R. Canevarolo, J.A. Yunes, F.F. Padilha, R.L.C. Júnior, M.L. Hernández-Macedo, J Nanosci. Nanotechnol. 18, 3722 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.G. Gong, C.J. Lin, J. Hazard. Mater. 184, 855 (2010)CrossRefGoogle Scholar
  34. 34.
    P. Romero-Gomez, V. Rico, A. Borrás, A. Barranco, J.P. Espinós, J. Cotrino, A.R. González-Elipe, J. Phys. Chem. C 113, 13341 (2009)CrossRefGoogle Scholar
  35. 35.
    Q. Sun, X. Sun, Y. Li, L. Yu, L. Dong, Sci. Adv. Mater. 5, 1221 (2013)CrossRefGoogle Scholar
  36. 36.
    R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47, 4213 (2002)CrossRefGoogle Scholar
  37. 37.
    J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, P.R. Bueno, J. Electroanal. Chem. 475, 152 (1999)CrossRefGoogle Scholar
  38. 38.
    B. Lee, D.B. Buchholz, P. Guo, D.K. Hwang, R.P. Chang, J. Phys. Chem. C 115, 9787 (2011)CrossRefGoogle Scholar
  39. 39.
    H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, N.G. Park, Nano Lett. 13, 2412 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J. Zhou, L. Yin, K. Zha, H. Li, Z. Liu, J. Wang, B. Feng, Appl. Surf. Sci. 367, 118 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Hu, D. Chen, X. Zhan, F. Wang, L. Qin, Y. Huang, Appl. Phys. A 123, 399 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Department of PhysicsHamline UniversitySaint PaulUSA

Personalised recommendations