Advertisement

Applied Physics A

, 125:249 | Cite as

Investigation on physical properties of CdO thin films affected by Tb doping for optoelectronics

  • V. Ganesh
  • M. Aslam Manthrammel
  • Mohd. Shkir
  • S. AlFaifyEmail author
Article
  • 23 Downloads

Abstract

Thin films of Tb-doped CdO were grown on FTO substrates using the sol–gel-spin coater technique. XRD studies confirmed the polycrystalline cubic growth of the films with a (200) preferential orientation. XRD analysis was used to estimate the crystallite sizes, dislocation density, and microstrain values, and found that they are highly dependent on the doping percentage. Homogeneous distributions of the nano-gains were observed from the AFM studies. Energy-dispersive spectroscopy and mapping analyses were used for the uniform elemental composition confirmation. All the films displayed high transmission reaching nearly 80% in the visible spectrum and the effect of Tb doping was very clear by corresponding systematic increase in intensities. The direct band-gap values were estimated from the Tauc plots and are found to be highly tunable based on the doping percentage, which was varying between 2.79 and 2.91 eV. The refractive index and extinction coefficient values are lies between 1.8 and 2.5 and 0.44 to 0.82. The \({\chi ^{(1)}}\) values are found to be varying between of 0.05 to 0.45 within the range 1–4 eV. This suggests all the linear and nonlinear optical properties of the present samples can be tailored for the various applications by the doping.

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through general research project under Grant number G.R.P-1-101-40.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest in the current article.

References

  1. 1.
    D.S. Ginley, C. Bright, MRS Bull. 25, 15–18 (2000)CrossRefGoogle Scholar
  2. 2.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123–R160 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1–5 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J.H. Hwang, D.D. Edwards, D.R. Kammler, T.O. Mason, Solid State Ion. 129, 135–144 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, T.O. Mason, Materials (Basel) 3, 4892–4914 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T.O.L. Sunde, E. Garskaite, B. Otter, H.E. Fossheim, R. Sæterli, R. Holmestad, M.-A. Einarsrud, T. Grande, J. Mater. Chem. 22, 15740–15749 (2012)CrossRefGoogle Scholar
  7. 7.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629–632 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H. Shokri Kojori, J.-H. Yun, Y. Paik, J. Kim, W.A. Anderson, S.J. Kim, Nano Lett. 16, 250–254 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    H. Im, H. Shao, Y.I. Park, V.M. Peterson, C.M. Castro, R. Weissleder, H. Lee, Nat. Biotechnol. 32, 490–495 (2014)CrossRefGoogle Scholar
  10. 10.
    M.A. Green, Low-dimensional systems and nanostructures. Physica E 14, 65–70 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    G. Blasse, B.C. Grabmaier, Luminescent materials. (Springer, Berlin, 1994)CrossRefGoogle Scholar
  12. 12.
    D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, A.K. Tyagi, J. Phys. Chem. C 112, 6781–6785 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Nazarov, D.Y. Noh, New Generation of europium and terbium activated phosphors, in New Generation of Europium and Terbium Activated Phosphors (Pan Standford Publishing, 2011)Google Scholar
  14. 14.
    B. Saha, R. Thapa, N.S. Das, K.K. Chattopadhyay, Indian J. Phys. 84, 681–685 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Vacuum 85, 861–865 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Ziabari, F.E. Ghodsi, J. Alloys Compd. 509, 8748–8755 (2011)CrossRefGoogle Scholar
  17. 17.
    F. Yakuphanoglu, Appl. Surf. Sci. 257, 1413–1419 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    V. Bilgin, I. Akyuz, S. Kose, F. Atay, Semicond. Sci. Technol. 21, 579–585 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Mater. Sci. Semicond. Proc. 36, 57–64 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, Mater. Res. Express 5, 095032 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    M. Shkir, S. AlFaify, V. Ganesh, I.S. Yahia, Solid State Sci. 70, 81–85 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    M. Shkir, I.S. Yahia, V. Ganesh, Y. Bitla, I.M. Ashraf, A. Kaushik, S. AlFaify, Sci. Rep. 8, 13806 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M. Shkir, S. AlFaify, Sci. Rep. 7, 16091 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    B. Sahin, Sci. World J. 2013, 172052 (2013)CrossRefGoogle Scholar
  25. 25.
    V. Srihari, V. Sridharan, T.R. Ravindran, S. Chandra, A.K. Arora, V.S. Sastry, C.S. Sundar, A.B. Garg, R. Mittal, R. Mukhopadhyay, 845–846 (2011)Google Scholar
  26. 26.
    R. Oliva, J. Ibáñez, L. Artús, R. Cuscó, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, J. Appl. Phys. 113, 053514 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627–637 (1966)ADSCrossRefGoogle Scholar
  28. 28.
    M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, S. AlFaify, J. Mol. Struct. 1173, 375–384 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    M. Shkir, M. Taukeer Khan, V. Ganesh, I.S. Yahia, B. Ul Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Opt. Laser Technol. 108, 609–618 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, H. Zahran, J. Mater. Sci. Mater. Electron. 29, 6446–6457 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Frumar, J. Jedelský, B. Frumarová, T. Wágner, M. Hrdlička, J. Noncryst. Solids, 326, 399–404 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    V. Ganesh, M. Shkir, S. AlFaify, I.S. Yahia, H.Y. Zahran, A.F.A. El-Rehim, J. Mol. Struct. 1150, 523–530 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater 4, 381–386 (2002)Google Scholar
  34. 34.
    R. Adair, L.L. Chase, S.A. Payne, Phys. Rev. B 39, 3337–3350 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, J. Mater. Sci. Mater. Electron. 28, 10573–10581 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, A.V. Soldatov, Opt. Laser Technol. 112, 207–214 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. Ganesh
    • 1
  • M. Aslam Manthrammel
    • 1
  • Mohd. Shkir
    • 1
  • S. AlFaify
    • 1
    Email author
  1. 1.Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations