Applied Physics A

, 125:244 | Cite as

Mullite membrane coatings: antibacterial activities of nanosized TiO2 and Cu-grafted TiO2 in the presence of visible light illumination

  • Wadwan Singhapong
  • Angkhana JaroenworaluckEmail author
  • Raweewan Pansri
  • Watchara Chokevivat
  • Panlekha Manpetch
  • Masahiro Miyauchi
  • Penjit Srinophakun


Porous mullites used as ceramic membranes were fabricated and coated with TiO2 and 0.1 wt% Cu(II)-grafted TiO2 powders. A spinning coating technique was applied for the coating process. Antibacterial activities of the coated mullites were tested against pathogenic bacteria Escherichia coli (E. coli) by following the experimental methods of ISO 17094:2014 standardized for testing photocatalyst materials under visible light of a florescent lamp as an indoor-tested condition. Mullites without coatings were used as control samples. After 4 h of light exposure, the number of the initially viable bacteria increased significantly for the uncoated mullites and decreased for all of the coated mullites. Coating layers of TiO2 and Cu-grafted TiO2 could inactivate E. coli under light illumination. In dark condition, 0.1 wt% Cu(II)-grafted TiO2 coating on the mullites could inactivate the bacteria, while TiO2 coating on the mullites could not inactivate the bacteria. The experimental results provide a possibility of using the coated mullites for disinfection applications. Bacterial inactivation mechanisms of TiO2 and Cu-grafted TiO2 in coating layers were investigated and discussed in terms of microstructural observation on the coating layers.



This work was supported by the National Metal and Materials Technology Center-National Science and Technology Development Agency (Grant number P-13-00697) and the European Commission under the PCATDES-FP7 (Grant number 309846). Thailand Advanced Institute of Science and Technology and Tokyo Institute of Technology (TAIST-Tokyo Tech) is acknowledged for the scholarship to W. Singhapong.


  1. 1.
    A. Vohra, D.Y. Goswami, D.A. Deshpande, S.S. Block, Enhanced photocatalytic disinfection of indoor air. Appl. Catal. B-Environ. 65, 57–65 (2006)CrossRefGoogle Scholar
  2. 2.
    S.H. Shah, Spectroscopic analysis of ultraviolet lamps for disinfection of air in hospitals. Water Air Soil Pollut. Focus 9, 529–537 (2009)CrossRefGoogle Scholar
  3. 3.
    A.C. Anderson, R.S. Reimers, P. deKernion, A brief review of the current status of alternatives of chlorine disinfection of water. Am. J. Public Health 72(11), 1290–1293 (1982)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(7), 37–38 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    C. Chung, H. Lin, H. Tsou, Z. Shi, J. He, An antimicrobial TiO2 coating for reducing hospital-acquired infection. J. Biomed. Mater. Res. B. 85B, 220–224 (2008)CrossRefGoogle Scholar
  6. 6.
    V. Caratto, B. Aliakbarian, A.A. Casazza, L. Setti, C. Bernini, P. Perego, M. Ferretti, Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light. Mater. Res. Bull. 48, 2095–2101 (2013)CrossRefGoogle Scholar
  7. 7.
    B. Sohm, F. Immel, P. Bauda, C. Pagnout, Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli the dark. Proteomics 15, 98–113 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S.S. Alias, Z. Harun, I.S.A. Latif, Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes. J. Mater. Sci. 53, 11534–11552 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Dhananjeyan, E. Mielczarski, K.R. Thampi, M. Buffat, PH Bensimon, A. Kulik, J. Mielczarski, J. Kiwi, Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J. Phys. Chem. B. 105, 12046–12055 (2001)CrossRefGoogle Scholar
  11. 11.
    N.N. Bahrudin, M.A. Nawi, Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol. Korean J. Chem. Eng. 35(7), 1532–1541 (2018)CrossRefGoogle Scholar
  12. 12.
    L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J. Photochem. Photobiol. A Chem. 202, 92–98 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Liu, X. Qiu, K. Hashimoto, M. Miyauchi, Cu (II) nanocluster-grafted, Nb-doped TiO2 as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states. J. Mater. Chem. A. 2, 13571–13579 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Liu, K. Sunada, K. Hashimoto, M. Miyauchi, Visible-light sensitive Cu(II)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J. Mater. Chem. A. 3, 17312–17319 (2015)CrossRefGoogle Scholar
  15. 15.
    ISO 27447: Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for antibacterial activity of semiconducting photocatalytic materials. International Organization for Standardization (ISO), Berlin (2009)Google Scholar
  16. 16.
    L. Janovák, Á Deák, S.P. Tallóy, D. Sebők, E. Csapó, K. Bohinc, A. Abram, I. Pálinkó, I. Dékány, Hydroxyapatite-enhanced structural, photocatalytic and antibacterial properties of photoreactive TiO2/Hap/polyacrylate hybrid thin films. Surf. Coat. Technol. 326, 316–326 (2017)CrossRefGoogle Scholar
  17. 17.
    ISO 17094: Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for antibacterial activity of semiconducting photocatalytic materials under indoor lighting environment. International Organization for Standardization (ISO), Berlin (2014)Google Scholar
  18. 18.
    W. Singhapong, P. Srinophakun, A. Jaroenworaluck, Influence of pore characteristics on the properties of porous mullite ceramics. J. Aust. Ceram. Soc. 53, 811–820 (2017)CrossRefGoogle Scholar
  19. 19.
    E.R. Sanders, Aseptic laboratory techniques: plating methods. J. Vis. Exp. 63, e3064–e3081 (2012)Google Scholar
  20. 20.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Inc., Massachusetts, 1956)Google Scholar
  21. 21.
    T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman. Spectrosc. 7(6), 321–324 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    S.P.S. Porto, P.A. Fleury, T.C. Damen, Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 154(2), 522–526 (1967)ADSCrossRefGoogle Scholar
  23. 23.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Handbook of heterogeneous catalysis. Reporting physisorption data for gas/solid systems, pp. 1217–1230. Wiley-VCH, Weinheim (2008)Google Scholar
  24. 24.
    A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 38, 473–477 (2006)CrossRefGoogle Scholar
  25. 25.
    R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol–Gel Sci. Technol. 61, 1–7 (2012)CrossRefGoogle Scholar
  26. 26.
    U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9, 1–12 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Mitik-Dineva, J. Wang, V.K. Troung, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, Escherichia E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol. 58, 268–273 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Chen, Y. Guo, S. Chen, Z. Ge, H. Yang, J. Tang, Fabrication of Cu/TiO2 nanocomposite: toward an enhanced antibacterial performance in the absence of light. Mater. Lett. 83, 154–157 (2012)CrossRefGoogle Scholar
  29. 29.
    K. Sunada, M. Minoshima, K. Hashimoto, Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J. Hazard. Mater. 235–236, 265–270 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review. J. Membrane Sci. 472, 167–184 (2014)CrossRefGoogle Scholar
  31. 31.
    K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A Chem. 156, 227–233 (2003)CrossRefGoogle Scholar
  32. 32.
    S. Neuville, Transient transverse electrical field induced by selective adsorbtion on low gap semiconducting thin films. Sens. Actuator B-Chem. 121, 436–444 (2007)CrossRefGoogle Scholar
  33. 33.
    X. Lin, J. Li, S. Ma, G. Liu, K. Yang, M. Tong, D. Lin, Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9(10), e110247–e110254 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wadwan Singhapong
    • 1
    • 2
  • Angkhana Jaroenworaluck
    • 1
    Email author
  • Raweewan Pansri
    • 1
  • Watchara Chokevivat
    • 1
  • Panlekha Manpetch
    • 1
  • Masahiro Miyauchi
    • 3
  • Penjit Srinophakun
    • 2
  1. 1.National Metal and Materials Technology CenterNational Science and Technology Development AgencyKhlong NuengThailand
  2. 2.Department of Chemical Engineering, Faculty of EngineeringKasetsart UniversityBangkokThailand
  3. 3.Department of Materials Science and Engineering, School of Materials and Chemical TechnologyTokyo Institute of TechnologyTokyoJapan

Personalised recommendations