Advertisement

Applied Physics A

, 125:219 | Cite as

Surfactant-assisted spray pyrolyzed SnO2 nanostructures for NO2 gas-sensing application

  • D. L. Kamble
  • V. L. Patil
  • N. L. Tarwal
  • P. S. PatilEmail author
  • L. D. KadamEmail author
Article
  • 42 Downloads

Abstract

Well-defined morphologies of tin oxide (SnO2) nanostructures assisted by cationic surfactant such as cetyl trimethyl ammonium bromide (CTAB) have been obtained by simple and cost-effective spray pyrolysis technique (SPT) for NO2 gas detection. The effect of concentrations of CTAB on the structural, morphological, electrical, optical, and gas-sensing properties of SnO2 nanostructures was investigated using X-ray diffraction, field-emission scanning electroscope microscopy, two probe resistivity, and photoluminescence techniques. The XRD results revealed that high concentration of CTAB in the precursor solution leads to decrease in crystallite size with significant changes in the morphology of SnO2 nanostructures. Photoluminescence studies of the SnO2 nanostructures showed the emissions in visible region, which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions. The calculated crystallite size was found to be 10.78–24.57 nm. The optical band-gap energy was found to be in the range of 3.95–2.78 eV. Using indigenously built gas-sensing unit, the gas-sensing properties of synthesized thin film were studied. For NO2 gas at 150 °C as an operating temperature and for 20 ppm concentration of the gas, the gas response for CTAB4 thin film is found to be 19.43.

Notes

References

  1. 1.
    C. Wang, J.C. Zhao, X.M. Wang, B.X. Mai, G.Y. Sheng, P. Peng, J.M. Fu, Appl. Catal. B Environ. 39, 269–279 (2002)CrossRefGoogle Scholar
  2. 2.
    A.C. Bose, D. Kalpana, P. Thangadurai, S. Ramasamy, Power Sources 107, 138–141 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    A. Chowdhuri, V. Gupta, K. Sreenivas, Sens. Actuators B 93, 572 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Haridas, K. Sreenivas, V. Gupta, Sens. Actuators B 133, 270 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Zhou, R. Wang, B. Xu, Y. Li, Nanotechnology 17, 3939–3943 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ferrere, A. Zaban, B.A. Gregg, J. Phys. Chem. B 101, 4490–4493 (1997)CrossRefGoogle Scholar
  7. 7.
    C. Wang, A.J. Appleby, F.E. Little, Solid State Ion. 147, 13–22 (2002)CrossRefGoogle Scholar
  8. 8.
    J. Sun, Q. Tang, A. Lu, X. Jiang, Q. Wan, Nanotechnology 20, 255202(1–4) (2009)Google Scholar
  9. 9.
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395–1397 (1997)CrossRefGoogle Scholar
  10. 10.
    J.Q. Hu, Y. Bando, Q.L. Liu, D. Golberg, Adv. Funct. Mater. 13, 493–496 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Epifani, M. Alvisi, L. Mirenghi, G. Leo, P. Siciliano, L. Vasanelli, J. Am. Ceram. Soc. 84, 48–54 (2001)CrossRefGoogle Scholar
  12. 12.
    T.J. Liu, Z.G. Jin, J.X. Yang, L.R. Feng, J. Am. Ceram. Soc. 91, 1939–1944 (2008)CrossRefGoogle Scholar
  13. 13.
    J.R. Zhang, L. Gao, J. Solid State Chem. 177, 1425–1430 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Z.R. Dai, Z.W. Pan, Z.L. Wang, J. Am. Chem. Soc. 124, 8673–8680 (2002)CrossRefGoogle Scholar
  15. 15.
    C.L. Yu, J.C. Yu, F. Wang, H.R. Wen, Y.Z. Tang, CrystEngComm 12, 341–343 (2010)CrossRefGoogle Scholar
  16. 16.
    L.P. Qin, J.Q. Xu, X.W. Dong, Q.Y. Pan, Z.X. Cheng, Q. Xiang, F. Li, Nanotechnology 19, 185705 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S. Das, S. Kar, S. Chaudhuri. J. Appl. Phys. 99, 114303 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    O. Dos Santos, M.L. Weiller, D.Q. Junior, A.N. Medina, Sens. Actuators B Chem. 75, 83–87 (2001)CrossRefGoogle Scholar
  19. 19.
    M.H. Xu, F.S. Cai, J. Yin, Z.H. Yuan, L.J. Bie, Sens. Actuators B Chem. 145, 875–878 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Nano Lett. 9, 612–616 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H. Yang, X. Song, X. Zhang, W. Ao, G. Qiu, Mater. Lett. 57, 3124–3127 (2003)CrossRefGoogle Scholar
  22. 22.
    H.C. Chiu, C.S. Yeh. J. Phys. Chem. C 111, 7256–7259 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)CrossRefGoogle Scholar
  24. 24.
    L. Fraigi, D.G. Lamas, N.E. Walsoe de Reca, Nanostruct. Mater. 11, 311–318 (1999)CrossRefGoogle Scholar
  25. 25.
    T.R. Giraldi, M.T. Escote, A.P. Maciel, E. Longo, E.R. Leite, J.A. Varela, Thin Solid Films 515, 2678–2685 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S. Rani, M.C. Bhatnagar, S.C. Roy, N.K. Puri, D. Kanjilal, Sens. Actuators B 135, 35–39 (2008)CrossRefGoogle Scholar
  27. 27.
    C. Luyo, I. Fabregas, L. Reyes, J.L. Solis, J. Rodriguez, W. Estrada, R.J. Candal, Thin Solid Films 516, 25–33 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    P.S. Patil, Mater. Chem. Phys. 59, 185 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    N. Shirahata, W. Shin, N. Murayama, A. Hozumi, Y. Yokogawa, T. Kameyama, Y. Masuda, K. Koumoto, Adv. Funct. Mater. 14, 580–588 (2004)CrossRefGoogle Scholar
  30. 30.
    Y.D. Wang, C.L. Ma, X.D. Sun, H.D. Li, Nanotechnology 13, 565–569 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    H.Z. Wang, J.B. Liang, H. Fan, B.J. Xi, M.F. Zhang, S.L. Xiong, Y.C. Zhu, Y.T. Qian, J. Solid State Chem. 181, 122–129 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira, Sens. Actuators B Chem. 83, 209–215 (2002)CrossRefGoogle Scholar
  33. 33.
    P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152–155 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    W.Z. Wang, J.Z. Niu, L. Ao, J. Cryst. Growth 310, 351–355 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    G. Xu, D.F. Zhang, L.D. Sun, C.H. Yan, Phys. Chem. Chem. Phys. 8, 4874–4880 (2006)CrossRefGoogle Scholar
  36. 36.
    A.R. Mahjoub, A.A. Firooz, A.A. Khodadadi, Sens. Actuators B Chem. 141, 89–96 (2009)CrossRefGoogle Scholar
  37. 37.
    C.X. Guo, M.H. Cao, C.W. Hu, Inorg. Chem. Commun. 7, 929–931 (2004)CrossRefGoogle Scholar
  38. 38.
    C.K. Xu, X.L. Zhao, S. Liu, G.H. Wang, Solid State Commun. 125, 301–304 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    L.L. Wang, X.H. Yang, Mater. Lett. 61, 3705–3707 (2007)CrossRefGoogle Scholar
  40. 40.
    A.L. Patterson, Phys. Rev. 56, 978–982 (1939)ADSCrossRefGoogle Scholar
  41. 41.
    D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, J. Anal. Appl. Pyrolysis 127, 38–46 (2017)CrossRefGoogle Scholar
  42. 42.
    K.C. Sharma, J.C. Garg, Phys. D Appl. Phys. 23, 1411–1419 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    K. Khun Khun, A. Mahajan, R.K. Bedi, Electron. Mater. Lett. 7, 303–308 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    P. Tyagi, A.G. Vedeshwar, Bull. Mater. Sci 24–39, 297–302 (2001)CrossRefGoogle Scholar
  45. 45.
    S.S. Shinde, P.S. Shinde, V.G. Shate, J. Mol. Struct. 984, 186–192 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    A.R. Babar, S.S. Shinde, A.V. Mohalkar, J. Alloys Compd. 509, 3108–3115 (2011)CrossRefGoogle Scholar
  47. 47.
    L. Francioso, A. Forleo, S. Capone, M. Epifani, A.M. Taurino, P. Siciliano, Sci. China, Ser. B: Chem. SCBCFQ1006-9291Google Scholar
  48. 48.
    M. Afzal, P.S. Naik, L.I. Nadaf, I.N. Shaikh, Sens. Actuators B 114, 646–655 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Solid State Physics Laboratory, Department of PhysicsYashvantrao Chavan Institute of ScienceSataraIndia
  2. 2.Department of PhysicsBhogawati Mahavidyalaya, KurukaliKolhapurIndia
  3. 3.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations