Advertisement

Applied Physics A

, 125:231 | Cite as

Low-field microwave absorption in Zn1−x(Mn:Fe(Ni))xO (x = 0.02) system: hysteresis, line shapes and powdering effects

  • T. S. MahuleEmail author
  • J. Das
  • V. V. Srinivasu
Article
  • 21 Downloads

Abstract

We studied the low-field microwave absorption (LFMA) in polycrystalline pellet and powdered (0.1–0.2 µm particle size) samples with a nominal composition of Zn1 − x(Mn:Fe(Ni))xO (x = 0.02). LFMA signals are stronger in the case of Mn:Fe co-doped ZnO, as compared to that of Mn:Ni co-doped ZnO. While the bulk samples show hysteresis, it disappears in the case of powdered samples. Further the line shapes of LFMA were modified with powdering, leading to small saturation fields for LFMA. This indicates that the microwave absorption in these powders is more sensitive than in the pellet form. We interpret these results in terms of interparticle–interfacial pinning. In this work, we clearly establish the low-field tunability of microwave absorption in the Zn1 − x(Mn:Fe(Ni))xO (x = 0.02) system, which is good for the applications as microwave absorbers with small field tunability as a functionality. This means LFMA can give inputs for the right choice of material for field-tunable microwave absorber design.

Notes

Acknowledgements

The authors would like to acknowledge NRF South Africa for a partial support for this work.

References

  1. 1.
    V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, J. Appl. Phys. 83, 2866 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, H. Ghosh, S.D. Tyagi, J. Appl. Phys. 86, 1067 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    R. Valenzuela, G. Alvarez, H. Montiel, M.P. Gutierrez, M.E. Mata-Zamora, F. Barron, A.Y. Sanchez, I. Betancourt, R. Zamorano, J. Magn. Magn. Mater. 320, 1961 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Gavi, B.D. Ngom, A.C. Beye, A.M. Strydom, V.V. Srinivasu, M. Chaker, N. Manyala, J. Magn. Magn. Mater. 324, 1172 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    J. Lee, J. Kim, K.H. Kim, Phys. Status. Solidi A211, 1900 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H. Montiel, G. Alvarez, I. Betancourt, R. Zamorano, R. Valenzuela, Appl. Phys. Lett. 86, 072503 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H. Montiel, G. Alverez, M.P. Gutierrez, R. Zamorano, R. Valenzuela, IEEE Trans. Magn. 42, 3380 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Vazquez, G. Badidni-Confalonieri, J. Torrejon, R. Valenzuela, H. Montiel, G. Alvarez, in: Proceedings of the Third International Conference on Quantum, Nano and Micro Technologies, (2009), p. 134Google Scholar
  9. 9.
    J.F. Felix, L.C. Figueiredo, J.B.S. Mendes, P.C. Morias, C.L.L. De. Araujo, J. Magn. Magn. Mater. 395, 130 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    T.S. Mahule, V.V. Srinivasu, J. Das, Solid State Commun. 243, 60 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    G. Alvarez, R. Font, J. Portelles, R. Zamorano, R. Valenzuela, J. Phys. Chem. Solids 68, 1436 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G. Alvarez, M.P. Cruz, A.C. Dur´an, H. Montiel, R. Zamorano, Solid State Commun. 150, 1597 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    G. Alvarez, H. Montiel, J.F. Barron, M.P. Gutierrez, R. Zamorano, J. Magn. Magn. Mater. 322, 348 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G. Alvarez, R. Zamorano, J. Alloys Compd. 369, 231 (2004)CrossRefGoogle Scholar
  15. 15.
    G. Alvarez, H. Montiel, M.A. Castellanos, J. Heiras, R. Valenzuela, Mater. Sci. Eng. B 150, 175–179 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Montiel, G. Alvarez, M.P. Gutiérrez, R. Zamorano, R. Valenzuela, J. Alloys Compd. 369, 141 (2004)CrossRefGoogle Scholar
  17. 17.
    M.P. Gutiérrez, G. Alvarez, H. Montiel, R. Zamorano, R. Valenzuela, J. Magn. Magn. Mater. 316, e738 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    R.R. Rakhimov, H.R. Ries, D.E. Jones, L.B. Glebov, L.N. Glebova, Appl. Phys. Lett. 76, 751 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    G. Alvarez, R. Zamorano, J. Heiras, M. Castellanos, R. Valenzuela, J. Magn. Magn. Mater. 316, e695 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    M.E. Mata-Zamora, H. Montiel, G. Alvarez, J.M. Saniger, R. Zamorano, R. Valenzuela, J. Magn. Magn. Mater. 316, e532 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    G. Alvarez, J.A. Peña, M.A. Castellanos, H. Montiel, R. Zamorano, Rev. Mexi. Física S 58, 24–27 (2012)Google Scholar
  22. 22.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 417, 130–136 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, Ceram. Int. 43, 5635–5641 (2017)CrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanova, A.V. Trukhanova, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, An.V. Trukhanova, E.L. Trukhanov, V.O. Natarov, A.M. Balagurov, J. Magn. Magn. Mater. 426, 554–562 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. 44, 290–300 (2018)CrossRefGoogle Scholar
  26. 26.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102–016106 (2016)CrossRefGoogle Scholar
  28. 28.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, D.A. Krivchenya, Phys. Solid State 59, 737–745 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 457, 83–96 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, J. Sol. State Chem. 169, 85–95 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51–61 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    M.-S. Jia Liu, Q. Cao, H.-L. Luo, W.-Z. Shi, Wang, J. Yuan, ACS Appl. Mater. Interfaces 8, 22615–22622 (2016)CrossRefGoogle Scholar
  33. 33.
    C.H. Townes, A.L. Schawlow, Microwave Spectroscopy (Dover Publications, New York, 1996)Google Scholar
  34. 34.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, JETP 111, 209–214 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, JETP 113, 819–825 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, J. Low Temp. Phys. 149, 185–199 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909–093913 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, An.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, J. Magn. Magn. Mater. 426, 487–496 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, J. Magn. Magn. Mater. 464, 139–147 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L. Yu Matzui, Dalton Trans. 46, 9010–9021 (2017)CrossRefGoogle Scholar
  41. 41.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Yu. Matzui, D.A. Vinnik, D.V. Karpinsky, J. Phys. Chem. Sol. 111, 142–152 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 127–135 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, L.Yu. Macuy, E.L. Trukhanov, Ceram. Int. 44, 13520–13529 (2018)CrossRefGoogle Scholar
  44. 44.
    H. Wu, S. Qu, K. Lin, Y. Qing, F. Zhang, Powder Technol. 333, 153–159 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South AfricaJohannesburgSouth Africa
  2. 2.Department of PhysicsSilicon Institute of TechnologyBhubaneswarIndia

Personalised recommendations