Applied Physics A

, 125:210 | Cite as

Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells

  • Ahmed M. NawarEmail author


In the present work, fabrication of crystalline methyl violet 6B thin films with thickness ranging from 95 to 237 nm was aimed and revealed the thermal post-annealing roles (373 K) of structural and optical properties of these films prior to fabrication of Ag/MV-6B/p-Si/Al heterojunctions solar cells. As-grown samples revealed textured films with crystalline granular particles and the other annealed films had a smoothed and healed surface embedded by small crystalline cubes. The crystal structure of methyl violet 6B was analyzed in powder form by X-ray diffraction (XRD) and exhibits triclinic unit cell: a = 7.0695 Å, b = 11.9807 Å, c = 15.8710 Å, α = 64.02 Å, β = 67.67 Å and γ=83.81 Å, and space group (P1). The average crystallite size of plane [011] for methyl violet 6B in powder form and as-grown and annealed film forms is 27, 23 and 32 nm, respectively. All fabricated MV-6B films have a transparency not less than 80% in the range of the IR region. The evaluated transition is allowed one and the calculated onset optical gap is 1.766 and 1.643 eV for as-grown and annealed films, respectively. There was an abrupt change in the value of skin depth, δο, from 5.76 × 10−4 cm to nearly 0 as the photon energy was increased from 1.92 to 2.3 eV. This result may be important in optical switching applications. The calculated static dielectric constant was εst = \(n_{{\text{o}}}^{2}\) which was found to be 1.807 and 1.821 for as-grown and annealed films, respectively. Spin-coated nanocrystalline MV-6B films were successfully utilized to fabricate Ag/MV-6B/p-Si/Al heterojunctions. The thermal annealing at 373 K decreased the barrier height of the fabricated heterojunctions from 0.77 for as-grown to 0.663 eV. The annealing temperature improved the responsivity of the Ag/MV-6B/p-Si/Al devices. The series resistance of the junction was decreased from 345 to 202 Ω, but the saturation current was increased from 67 nA to 0.55 µA for as-grown and annealed MV-6B/p-Si junctions, respectively. The power conversion efficiency (PCE) of Ag/MV-6B/p-Si/Al heterojunctions was increased from 1.36 to 3.61% with the incident light intensity from 31 to 90 mW/cm2.



  1. 1.
    Y.U. Huacongl, W.A.N.G. Qi, L.U. Chuanda, W.E.I. Cheng gang, The research on a new type of BIPV modules constructed by Thin-film Photovoltaic Panel(or Module)/PU/Color organic coated Steel Plate, IEEE (2015) 978-1-4799-7944-8$4Google Scholar
  2. 2.
    Mizukami M, Cho S, Watanabe K, Abiko M, Suzuri Y, Tokito S, Kido J, Flexible organic light-emitting diode displays driven by inkjet printed high mobility organic thin film transistors. IEEE Electron. (2018) CrossRefGoogle Scholar
  3. 3.
    M.D. Cathell, C.L. Schauer, Structurally colored thin films of Ca2+-cross-linked alginate. Biomacromol 8(1), 33–41 (2007)CrossRefGoogle Scholar
  4. 4.
    P.M. Lee, M.S.M. Arsad, A.C. Yussoff, L.K. Hung, Colored thin film for screening and evaluation of antioxidants. IEEE Xplore (2011). CrossRefGoogle Scholar
  5. 5.
    K. Jerome, T. Hyun, H. Kang, D. Baek, Kim, G. Yi, Nanoscale single-element color filters. Nano Lett. 15(9), 5938–5943 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ahmed, I.S. Nawar, Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    R. Pardo, M. Zayat, D. Levy, Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011). CrossRefGoogle Scholar
  8. 8.
    G. Zhanga, J.M.W. Chan, Reversibly thermochromic bismuth-organic materials with tunable optical gaps. J. Mater. Chem. C 5(38), 10007–10015 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Shuzhong Wang, W. Cai, H. Cai, C. Niu, X. Wang, W. Bai, Wang, Y. Hou, Organic-inorganic hybrid electrochromic materials, polysilsesquioxanes containing triarylamine, changing color from colorless to blue, Sci. Rep.,
  10. 10.
    W. Li Wang, A. Chen, T.S. Wee, Charge transfer across the molecule/metal interface using the core hole clock technique. Surf. Sci. Rep. 63, 465–486 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Enver Aydin, F. Yakuphanoglu, Electrical characterization of inorganic-on-organic diode based InP and poly (3,4 ethylene dioxithiophene)/poly (styrene sulfonate) (PEDOT:PSS), Microelectron Reliab., 52 (2012) 1350–1354Google Scholar
  12. 12.
    A.A. Attia, M.M. Saad eldin, H.S. Soliman, A.-S. Gadallah, K. Sawaby, Structural and optical properties of p-quaterphenyl thin films and application in organic/inorganic photodiodes. Opt. Mater. 62, 711–716 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    R. Otero, A.L. Vázquezde Parga, J.M. Gallego, Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces. Surf. Sci. Rep. 72, 105–145 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    G.-J. Hou, D.-L. Wang, R. Ali, Y.-R. Zhou, Z.G. Zhu, G. Su, CH3NH3PbI3/GeSe bilayer heterojunction solar cell with high performance. Sol. Energy 159, 142–148 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    W.T. Neo, Q. Ye, S.J. Chua, J.W. Xu, Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 4, 7364–7376 (2016)CrossRefGoogle Scholar
  16. 16.
    G.F. Cai, J. X. Wang, P.S. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Ying Diao, Z. Shaw, Bao, S.C.B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014)CrossRefGoogle Scholar
  18. 18.
    Morteza, Eslamian, Inorganic and organic solution-processed thin film devices, Nano-Micro Lett. pp 3–9 (2017)Google Scholar
  19. 19.
    L.E. Scriven, Physics and application of dip-coating and spin-coating. In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry III, vol 121, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, (1988)717–729Google Scholar
  20. 20.
    C.J. Lawrence, W. Zhou, Spin coating of non-Newtonian fluids, 39 (1991) 137–187Google Scholar
  21. 21.
    M.M. El-Nahass, Z. El-Gohary, H.S. Soliman, Structural and optical studies of thermally evaporated CoPc thin flms. Opt Laser Technol 35, 523–531 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A.A.M. Farag, A. Ashery, M. Abdel, Rafe, Optical dispersion and electronic transition characterizations of spin coated polyaniline thin films. Synth. Met. 160, 156–161 (2010)CrossRefGoogle Scholar
  23. 23.
    A.A.M. Farag, A. Ashery, M.A. Shenashen, Optical absorption and spectrophotometric studies on the optical constants and dielectric of poly (o-toluidine) (POT) films grown by spin coating deposition. Phys B 407, 2404–2411 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    H.S. Soliman, M. Ibrahim, M.A.M. El-Mansy, S.M. Atef, Structural and optical study of nanostructure of 4-cyanopyranoquinolinedione (CPQ) thin films. Opt. Mater. 72, 122–129 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Farouk Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ahmed. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    I.S. Yahia, M.A.S. Sherif, S. Keshk, A.M. AlFaify, El-Naggar, M.M. Abutalib, Synthesis and characterization of wide-scale UV–vis CUT-OFF laser filter using methyl violet-6B/PMMA polymeric composite films. Sens. Actuators A 269, 388–393 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Saji, S. Taguchi, K. Uchiyama, E. Osono, N. Hayama, H. Ohkuni, Efficacy of gentian violet in the eradication of methicillin-resistant Staphylococcus aureus from skin lesions. J. Hosp. Infect. 31, 225–228 (1995)CrossRefGoogle Scholar
  29. 29.
    E.E. Oguzie, V.O. Njoku, C.K. Enenebeaku, C.O. Akalezi, C. Obi, Effect of hexamethyl Pararosaniline chloride (crystal violet) on mild steel corrosion in acidic media. Corros. Sci. 50, 3480–3486 (2008)CrossRefGoogle Scholar
  30. 30.
    Y.J. Btqdek, M. Mlszczak, Testing the chemical stability of smokeless propellants. Chem. Anal. (Warsaw) 38, 813 (1993)Google Scholar
  31. 31.
    M. Tanur Sinha, Ahmaruzzaman, A. Bhattacharjee, A simple approach for the synthesis of silver nanoparticles and their application as a catalyst for the photodegradation of methyl violet 6B dye under solar irradiation. J. Environ. Chem. Eng. 2, 2269–2279 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Clemens Burda, R. Chen, Narayanan, A. Mostafa, El-Sayed, The chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005). Page28CrossRefGoogle Scholar
  33. 33.
    H.M. Zeyada, M.M. EL-Nahass, I.S. Elashmawi, A.A. Habashi, Annealing temperatures induced optical constant variations of methyl violet 2B thin films manufactured by the spin coating technique. J. Non-Cryst. Solids 358, 625–636 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    G.I. Yepanov, Y.A. Moma, Introduction to Solid State Electronics, MIR, USSR, 1970Google Scholar
  35. 35.
    M.M. El-Nahass, H.M. Abd El-Khalek, M. Ahmed, Nawar, Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films. Opt. Commun. 285, 1872–1881 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    M.M. El-Nahass, H.M. Abd El-Khalek, A.M. Nawar, Structural and optical characterizations of Ni (II) tetraphenyl porphyrin thin films. Eur. Phys. J. Appl. Phys. 57, 30201 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    A. Jochen Campo, F. Painelli, T. Terenziani, D. Van Regemorter, E. Beljonne, Goovaerts, W. Wenseleers, First hyperpolarizability dispersion o the octupolar molecule crystal violet: multiple resonances and vibrational and solvation effects, J. Am. Chem. Soc.
  38. 38.
    M. Fox., Oxford Master Ser. Condens. Matter Phys. (2001) 64Google Scholar
  39. 39.
    M. Born, E. Wolf, Principles of Optics (7th ed., Cambridge University Press, United Kingdom, 2003)Google Scholar
  40. 40.
    A. Jochen Campo, F. Painelli, T.V. Terenziani, D. Regemorter, E. Beljonne, Goovaerts, W. Wenseleers, First Hyperpolarizability dispersion of the octupolar molecule crystal violet: multiple resonances and vibrational and solvation effects. J. Am. Chem. Soc. 132(46), 16467–16478 (2010). CrossRefGoogle Scholar
  41. 41.
    G. Li, V. Shrotriya, Y. Yao, Y. Yanga, J. Appl. Phys. 98, 043704 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    U. Honghua, J.D.’Archangel Yang, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Optical dielectric function of silver. Phys. REV. B 91, 235137 (2015) 36ADSCrossRefGoogle Scholar
  43. 43.
    P.O. Edward, Academic Press, New York, (1985), p. 265Google Scholar
  44. 44.
    S.H. Wemple, DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. J. Phys. Rev. B 3, 1338 (1971)ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. J. Phys. Rev. B 7, 3767 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    P.O. Edward, Hand Book of Optical Constants of Solids (Academic Press, New York, 1985), p. 265Google Scholar
  47. 47.
    G.L. Tana, L.K. DeNoyer, R.H. French, M.J. Guittetd, M. Gautier-Soyerd, Kramers–Kronig transform for the surface energy loss function. J. Electron. Spectrosc. Rel. Phenomena 142, 97–103 (2004)CrossRefGoogle Scholar
  48. 48.
    M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Optica properties of nano 5,10,15,20-tetraphenyl-21H,23H-prophyrin nickel (II) thin films. Curr. Appl. Phys. 12, 1178–1184 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    C.J. Wu, Y.L. Chen, T.J. Yang, Effective surface impedance of a high temperature superconducting film in semiconductor plasma substrate at mid-infrared frequency, J Supercond. Nov. Magn. (2010) 23: 545–550CrossRefGoogle Scholar
  50. 50.
    A.B. Pippard, The surface impedance of superconductors and normal metals at high frequencies. II. The anomalous skin effect in normal metals, Proc. R. Soc. Lond. 191, 385–399 (1947)Google Scholar
  51. 51.
    Optical effects in solids David B. Tanner, Department of Physics. David B. Tanner. Department of Physics, University of Florida, Gainesville, FL 32611 – 8440, USA. Lecture notes for PHY 7097Google Scholar
  52. 52.
    R. Adair, L. Chase, S.A. Payne, Nonlinear refractive index of optical crystals. J. Phys. Rev. B 39, 3337 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    H. Tich_a, L. Tichý, Semi-empirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381 (2002)Google Scholar
  54. 54.
    C. Charles, Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities, J. Phys. Rev. B 2, 2045 (1970)CrossRefGoogle Scholar
  55. 55.
    M.M. Makhlouf, Preparation and optical characterization of b-MnO2 nano thin films for application in heterojunction photodiodes. Sens. Actuators A 279, 145–156 (2018)CrossRefGoogle Scholar
  56. 56.
    M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Phys. Rev. Lett. 65–96 (1990)Google Scholar
  57. 57.
    M. Sheik-Bahae, E.W. Van Stryland, Semiconductors and Semimetals, vol. 58 by E. Garmire, A. Kost (Academic, San Diego, 1999) Chap. 4Google Scholar
  58. 58.
    S.F. Mansour, M.Y. El Sayed Yousef, Hassaan, A.M. Emara, The influence of oxides on the optical properties of tellurite glasses. Phys. Scr. 89, 115812 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    S.M. Sze, Physics of Semiconductor devices (Wiley, New York, 1969)Google Scholar
  60. 60.
    A.A. Al-Ghamdi, A.M. Nawar, F. El-Tantawy, S.J. Yaghmour, A. Azam, Design and electrical characterization of Au/Anthracene/p-Si/Al organic/inorganic heterojunction. J. Alloy. Comp. 622, 243–249 (2015)CrossRefGoogle Scholar
  61. 61.
    H.M. Zeyada, A.A. Habashi, M.M. Makhlouf, A.S. Behairy, M.A. Nasher, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell. Microelectron. Eng. 163, 134–139 (2016)CrossRefGoogle Scholar
  62. 62.
    P. Tanner, A. Iacopi, H.-P. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D.V. Dao, N.T. Nguyen, Excellent rectifying properties of the n-3C-SiC/p-Si heterojunction subjected to high temperature annealing for electronics, MEMS, and LED applications. Sci. Rep. 7, 17734 (2017). ADSCrossRefGoogle Scholar
  63. 63.
    H.A. Afify, M.M. El-Nahass, A.–S. Gadallah, M. Atta, Khedr, Carrier transport mechanisms and photodetector characteristics of Ag/TiOPc/p-Si/Al hybrid heterojunction. Mater. Sci. Semicond. Process. 39, 324–331 (2015)CrossRefGoogle Scholar
  64. 64.
    H. Huanli Dong, Q. Zhu, X. Meng, Gong, W. Hu, Organic photoresponse materials and devices. Chem. Soc. Rev. 41, 1754–1808 (2012)CrossRefGoogle Scholar
  65. 65.
    S. Kazim, V. Alia, M. Zulfequar, M.M. Haq, M. Husain, Electrical transport properties of poly[2-methoxy-5-(20 -ethyl hexyloxy)-1,4-phenylene vinylene] thin films doped with acridine orange dye. Phys. B 393, 310–315 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    M.M. Makhlouf, A.S. Radwan, B. Ghazal, Experimental and DFT insights into molecular structure and optical properties of new chalcones as promising photosensitizers towards solar cell applications. Appl. Surf. Sci. 452, 337–351 (2018)ADSCrossRefGoogle Scholar
  67. 67.
    H.M. Zeyada, M.I. Youssif, N.A. El–Ghamaz, M.A. Nasher, Carrier transport mechanisms and photovoltaic characteristics of Au/toluidine blue/n-Si/Al heterojunction solar cell. J. Mater. Sci. Mater. Electron. 29, 3592–3601 (2018)CrossRefGoogle Scholar
  68. 68.
    B. Tatar, D. Demiroğlu, M. Urgen, Structure and photovoltaic properties of Ag/p-CuPc/a-Si/c-Si/Ag organic–inorganic hybrid heterojunction fabricated by chemical spray pyrolysis technique. Microelectron. Eng. 108, 150–157 (2013)CrossRefGoogle Scholar
  69. 69.
    M. El-Nahass, H. Zeyada, M. Aziz, M. Makhlouf, Current transport mechanisms and photovoltaic properties of tetraphenyl porphyrin/n-type silicon heterojunction solar cell. Thin Solid Films 492, 290–297 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    A.A. Darwish, E.A.A. El-Shazly, A.A. Attia, K.F. Abd El-Rahman, Dark electrical properties and photovoltaic performance of organic/inorganic (SnPcCl2/p-Si) solar cells. J. Mater. Sci. Mater. Electron. 27, 8786–8792 (2016)CrossRefGoogle Scholar
  71. 71.
    J. Cabestany, L. Castañer, A simple solar cell series resistance measurement method. Revue Phys. Appl. 18, 565–567 (1983)CrossRefGoogle Scholar
  72. 72.
    M. Bashahu, A. Habyarimana, Review and test of method for determination of the solar cell series resistance. Renew. Energy 6, 129–138 (1995)CrossRefGoogle Scholar
  73. 73.
    J. Thongpron, K. Kirtikara, C. Jivacate, A method for the determination of dynamic resistance of photovoltaic modules under illumination. Sol. Energy Mater. Sol. Cells 90, 3078–3084 (2006)CrossRefGoogle Scholar
  74. 74.
    F. Yakuphanoglu, Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth. Met. 157, 859–862 (2007)CrossRefGoogle Scholar
  75. 75.
    O. Güllü, S. Aydoğanb, A. Türüt, High barrier Schottky diode with organic interlayer, Solid State Commun. 152, 381–385 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    A.R. Deniz, Z. Çaldıran, M. Biber, Ü. İncekara, Ş. Aydoğan, Investigation of electrical properties of Ni/Crystal violet (C25H30CIN3) n-Si/Al diode as a function of temperature. J. Alloy. Compd. 763, 622–628 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thin Films Laboratory, Physics Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  2. 2.Physics Department, Faculty of Science and Arts (AlMikhwah)AlBaha UniversityAlBahaKingdom of Saudi Arabia

Personalised recommendations