Advertisement

Applied Physics A

, 125:204 | Cite as

Photosensing properties of ruthenium(II) complex-based photodiode

  • Arife Gencer ImerEmail author
  • Aysegul Dere
  • Abdullah G. Al-Sehemi
  • Osman Dayan
  • Zafer Serbetci
  • Ahmed A. Al-Ghamdi
  • Fahrettin Yakuphanoglu
Article
  • 132 Downloads

Abstract

Ru(II) complex containing 2,6-di(1H-pyrazol-3-yl)pyridine ligand was synthesized to prepare organic-based photodiode. After forming the back contact with aluminum metal on p-Si by thermal evaporation, Al/Ru(II) complex/p-Si heterojunction was constructed by inserting Ru(II) complex organic layer into Si substrate. The fundamental electrical parameters and photosensing properties of fabricated heterojunction were investigated by current–voltage and capacitance–voltage measurements under the dark and different light intensities. The studied device exhibits a good rectifying property with rectification ratio of 2.4 × 104 at ± 7 V. It is observed that the photosensing properties such as light sensitivity and photoconductive responsivity of the photodiode based on Ru(II) complex are strongly dependent on the illumination power. The transient measurements show that the heterojunction device has a good photo switching property in the application of the photodiode, photoconductor and photocapacitor. The obtained results declare that the fabricated Ru(II)-based heterojunction device can be used in the organic-based optoelectronic device applications as a photodiode, photosensor, and optical sensor.

Notes

Acknowledgements

Authors would like to acknowledge the support of the King Khalid University for this research through a Grant RCAMS/KKU/007-18 under the (Research Center for Advanced Materials Science) at King Khalid University, Kingdom of Saudi Arabia.

References

  1. 1.
    P.S. Wageenknecht, P.C. Ford, Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord. Chem. Rev. 255, 591 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Quin, L. Hu, N. Lei, Y.-F. Liu, K.-K. Zhang, J.-L. Zuo, Syntheses, characterization, and properties of Ru(II) complexes based on π-conjugated terpyridine ligand with tetrathiafulvalene moiety. Acta Chim. Slov. 61, 740 (2014)Google Scholar
  3. 3.
    S. Günnaz, N. Özdemir, S. Dayan, O. Dayan, B. Çetinkaya, Synthesis of ruthenium(II) complexes containing tridentate triamine (′ N ͡N ͡N′) and bidentate diamine ligands (N ͡N′): as catalysts for transfer hydrogenation of ketones. Organometallics 30, 4165 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Altan, Y.S. Ocak, S. Pasa, H. Temel, A. Tombak, T. Kilicoglu, K. Akkilic, M. Aydemir, Electrical and photoelectrical behaviour of heterojunctions based on novel oligomeric metal complexes. Appl. Organomet. Chem. 29, 798 (2015)CrossRefGoogle Scholar
  5. 5.
    A.G. Imer, R.H. Basha Syan, M. Gülcan, Y.S. Ocak, A. Tombak, The novel pyridine based symmetrical Schiff base ligand and its transition metal complexes: synthesis, spectral definitions and application in dye sensitized solar cells (DSSCs). J. Mater. Sci. Mater. Electron. 29, 898–905 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Rafikova, N. Kystaubayeva, M. Aydemir, C. Kayan, Y.S. Ocak, H. Temel, A. Zazybin, N. Gürbüz, İ Özdemir, Transfer hydrogenation of ketones catalyzed by new rhodium and iridium complexes of aminophosphine containing cyclohexyl moiety and photosensing behaviors of rhodium and iridium based devices. J. Organomet. Chem. 758, 1 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Aydemir, Y.S. Ocak, K. Rafikova, N. Kystaubayeva, C. Kayan, A. Zazybin, F. Ok, A. Baysal, H. Temel, Rhodium-catalyzed transfer hydrogenation with aminophosphines and analysis of electrical characteristics of rhodium(I) complex/n-Si heterojunctions. Appl. Organomet. Chem. 28, 396 (2014)CrossRefGoogle Scholar
  8. 8.
    Z.S. Wang, C.H. Huang, Y.Y. Huang, B.W. Zhang, P.H. Xie, Y.J. Hou, K. Ibrahim, H.J. Qian, F.Q. Liu, Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex. Sol. Energy Mater. Sol. Cell 71, 261–271 (2002)CrossRefGoogle Scholar
  9. 9.
    A.O. Adeloye, P.A. Ajibade, Towards the development of functionalized polypyridine ligands for Ru(II) complexes as photosensitizers in dye-sensitized solar cells (DSSCs). Molecules 19, 12421–12460 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Jella, M. Srikanth, R. Bolligarla, Y. Soujanya, S.P. Singha, L. Giribabu, Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton Trans. 44, 14697–14706 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Gunanathan, D. Milstein, Bond activation and catalysis by ruthenium pincer complexes. Chem. Rev. 114, 12024–12087 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Dogan, O. Dayan, M. Yurekli, B. Cetinkaya, Thermal study of ruthenium(II) complexes containing pyridine-2,6-diimines. J. Therm. Anal. Calorim. 91, 943–949 (2008)CrossRefGoogle Scholar
  13. 13.
    O. Oter, K. Ertekin, O. Dayan, B. Cetinkaya, Photocharacterization of novel ruthenium dyes and their utilities as oxygen sensing materials in presence of perfluoro chemicals. J. Fluoresc. 18, 269–276 (2008)CrossRefGoogle Scholar
  14. 14.
    O. Dayan, S. Dayan, I. Kani, B. Cetinkaya, Ruthenium(II) complexes bearing pyridine-based tridentate and bidentate ligands: catalytic activity for transfer hydrogenation of arylketones. Appl. Organomet. Chem. 26, 663–670 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Tataroglu, R. Ocaya, A. Dere, O. Dayan, Z. Serbetci, A.G. Al-Sehemi, M. Soylu, A.A. Al-Ghamdi, F. Yakuphanoglu, Ruthenium(II) complex based photodiode for organic electronic applications. J. Electron. Mater. 47, 828–833.; (2018)ADSCrossRefGoogle Scholar
  16. 16.
    A. Tataroglu, O. Dayan, N. Ozdemir, Z. Serbetci, A.A. A-Ghamdi, A. Dere, F. El-Tantawy, F. Yakuphanoglu, Single crystal ruthenium(II) complex dye based photodiode. Dyes Pigments 132, 64–71 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Wang, Z.G. Xie, K.E. deKrafft, W.L. Lin, Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011)CrossRefGoogle Scholar
  18. 18.
    S.E. Koops, B.C. O’Regan, P.R.F. Barnes, J.R. Durrant, Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 4808–4818 (2009)CrossRefGoogle Scholar
  19. 19.
    E. Elgazzar, O. Dayan, Z. Serbetci, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, Heteroleptic neutral Ru(II) complexes based photodiodes. Phys. B 516, 1–7 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    S. Yaşar, S. Çekirdek, N. Ertekin Binbay, A. Tombak, Y.S. Ocak, N. Arslan, A. Baysal, M. Aydemir, F. Durap, Electrical and photoelectrical characterization of organic-inorganic heterostructures based on Ru-N-heterocyclic carbene complexes. Optik. 156, 514 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    M. Ilhan, Electrical characterization of Al/fluoresce in sodium salt organic semiconductor/Au diode by current-voltage and capacitance–voltage methods. J. Mater. Electron. Device 1, 15–20 (2017)Google Scholar
  22. 22.
    Ş Altındal, On the origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky Barrier Diodes (SBDs. J. Mater. Electron. Device 1, 42–47 (2017)Google Scholar
  23. 23.
    A. Ugur, A. Gencer Imer, Y.S. Ocak, Electrical and photoelectrical characterization of an organic–inorganic heterojunction based on quinoline yellow dye. Mater. Sci. Semicond. Proc. 39, 569 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Özerli, İ Karteri, A. Bekereci, Ş Karataş, Analysis of current-voltage characteristics on inhomogeneous Zn/p-Si (100) Schottky contacts. J. Mater. Electron. Device 1, 83–87 (2017)Google Scholar
  25. 25.
    Z. Çaldiran, Ş Aydoğan, Ü İncekara, Schottky diode applications of the fast green FCF organic material and the analyze of solar cell characteristics. J. Phys. Conf. Ser. 707, 012052 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Gencer Imer, Y.S. Ocak, Effect of light intensity and temperature on the current voltage characteristics of Al/SY/p-Si organic–inorganic heterojunction. J. Electron. Mater. 48, 5347–5355 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Gencer Imer, A. Tombak, A. Korkut, Electrical and photoelectrical characteristic investigation of a new generation photodiode based on bromothymol blue dye. J. Phys. Con. Series 707, 012012 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.S. Ocak, M. Kulakci, T. Kılıçoğlu, R. Turan, K. Akkılıç, The electrical properties of Al/Methylene-Blue/n-Si/Au schottky diodes. Synth. Met. 159, 1603–1607 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Ilican, K. Gorgun, Y. Caglar, M. Caglar, Influence of irradiation time on structural, morphological properties of ZnO-NRs films deposited by MW-CBD and their photodiode applications J. Nanomater. 2017, 1–12 (2017).  https://doi.org/10.1155/2017/6308174 CrossRefGoogle Scholar
  30. 30.
    M. Soylu, M. Cavas, A.A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy, F. Yakuphanoglu, Photoelectrical characterization of a new generation diode having GaFeO3 interlayer. Sol. Energy Mater. Sol. Cell 124, 180–185 (2014)CrossRefGoogle Scholar
  31. 31.
    A.A.M. Farag, B. Gunduz, F. Yakuphanoglu, W.A. Farooq, Controlling of electrical characteristics of Al/pSi Schottky diode by tris(8-hydroxyquinolinato) aluminum organic film. Synth. Met. 160, 2559–2563 (2010)CrossRefGoogle Scholar
  32. 32.
    I. Tascıoglu, W.A. Farooq, R. Turan, S. Altındal, F. Yakuphanoglu, Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes. J. Alloy. Compd. 590, 157–161 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Yakuphanoglu, Y.S. Ocak, T. Kılıcoglu, W.A. Farooq, Interface control and photovoltaic properties of n-type silicon/metal junction by organic dye. Microelectron. Eng. 88, 2951–2954 (2011)CrossRefGoogle Scholar
  34. 34.
    A. Gencer Imer, O. Karaduman, F. Yakuphanoglu, Controlling of the photosensing properties of Al/DMY/p-Si heterojunctions by the interfacelayer thickness. Synth. Met. 221, 114–119 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Soylu, O.A. Al-Hartomy, S.A.F. Al-Said, A.A. Al-Ghamdi, I.S. Yahia, F. Yakuphanoglu, Controlling of conduction mechanism and electronic parameters of silicon–metal junction by mixed methylene blue/2′-7′-dichlorofluorescein. Microelectron. Reliab. 53, 1901–1906 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Tataroğlu, A.G. Al-Sehemi, M. Özdemir, R. Özdemir, H. Usta, A.A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, Frequency and electric field controllable photodevice: FYTRONIX device. Phys. B 519, 53 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    S. Arounaguiri, B.G. Maiya, “Electro-photo switch” and “molecular light switch” devices based on ruthenium(II) complexes of modified dipyridophenazine ligands: modulation of the photochemical function through ligand design. Inorg. Chem. 38, 842–843 (1999)CrossRefGoogle Scholar
  38. 38.
    H. Norde, J. Appl. Phys. 50, 5052–5055 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    M. Tercan, O. Dayan, Synthesis and DSSC applications of Ru(II) complexes bearing benzimidazole type ligands. J. Electron. Mater. 48, 642 (2019).  https://doi.org/10.1007/s11664-018-6758-8) ADSCrossRefGoogle Scholar
  40. 40.
    G. Di Marco, A. Bartolotta, V. Ricevuto, S. Campagna, G. Denti, L. Sabatino, G. De Rosa, Synthesis, absorption spectra, and photochemical behavior of mono- and dinuclear ruthenium(II) complexes, Inorg Chem. 30(2), 270–275 (1991)CrossRefGoogle Scholar
  41. 41.
    A. Rose, Concepts in Photoconductivity (Interscience, New York, 1963)Google Scholar
  42. 42.
    F. Yakuphanoglu, Controlling of electrical and interface state density properties of ZnO:Co/p-silicon diode structures by compositional fraction of cobalt dopant. Microelectron. Reliab. 51, 2195–2199 (2011)CrossRefGoogle Scholar
  43. 43.
    L. Li, J.H. Kwon, J. Jang, Tail states recombination limit of the open circuit voltage in bulk heterojunction organic solar cells. Org. Electron. 13, 230–237 (2012)CrossRefGoogle Scholar
  44. 44.
    L. Li, J.H. Kwon, J. Jang, Compact model for photo-generation current in organic solar cell. Appl. Phys. Lett. 99, 193305–193308 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    W. Wang, F. Zhang, M. Du, L. Li, M. Zhang, K. Wang, Y. Wang, B. Hu, Y. Fang, J. Huang, Highly narrow band photomultiplication type organic photodetectors. Nano Lett. 17, 1995–2002 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    C. Bao, Z. Chen, Y. Fang, H. Wei, Y. DeFng, X. Xiao, L. Li, J. Huang, Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29, 1703209 (2017)CrossRefGoogle Scholar
  47. 47.
    W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater. 27, 1703953 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arife Gencer Imer
    • 1
    Email author
  • Aysegul Dere
    • 2
  • Abdullah G. Al-Sehemi
    • 3
    • 4
    • 5
  • Osman Dayan
    • 6
  • Zafer Serbetci
    • 7
  • Ahmed A. Al-Ghamdi
    • 8
  • Fahrettin Yakuphanoglu
    • 9
  1. 1.Department of Physics, Faculty of ScienceVan YuzuncuYil UniversityVanTurkey
  2. 2.Nanoscience and Nanotechnology LaboratoryFirat UniversityElazigTurkey
  3. 3.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Research Center for Advanced Materials ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Unit of Science and Technology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Department of Chemistry, Faculty of Arts and ScienceÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  7. 7.Department of Chemistry, Faculty of Arts and SciencesBingol UniversityBingolTurkey
  8. 8.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  9. 9.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey

Personalised recommendations