Applied Physics A

, 125:196 | Cite as

Investigation of structural, optical and magnetic characteristics of Co3O4 thin films

  • Zohra Nazir KayaniEmail author
  • Saliha Arshad
  • Saira Riaz
  • Shahzad Naseem


Nano-structured Co3O4 thin film are synthesized by dip coating and their structural, surface, optical and magnetic properties have been studied. The X-ray diffraction of film shows that the crystalline Co3O4 has cubic structure with preferrd orientation along the (400) plane which makes them advantageous for optoelectronic devices. The scanning electron microscopy micrograph reveals that the film has a porous structure. The transmission of the films gradually decreases with the decrease of the wavelength in the 900–300 nm region. Upon enhancing the withdrawal speed of the substrate, the transmission shows decrement due to increase in film thickness. From the investigation of the transmission spectra of Co3O4 films, the band-gap is found to lie between 2.12 and 2.30 eV. Magnetic characteristic of thin films relies on the withdrawal speed and thickness of thin films. With the increase of withdrawal speed saturation magnetization increases while coercivity of thin films decreases.



  1. 1.
    M.B. Bever, Encyclopadia of Material Scisciencea and Engeneering (Pergamon, Oxford, 1986)Google Scholar
  2. 2.
    J.H. Richter, Electronics Properties of Metal Oxide Films Studied by Core Level Spectroscopy, Digital Comprehensive Summaries of Uppsala Faculty of Science and Technology, 228 (1969)Google Scholar
  3. 3.
    M.S. Halper, J.C. Ellenbogen, Supercapacitors: A Brief Overview (MITRE, Virginia, 2006)Google Scholar
  4. 4.
    S.K. Ray, G. Sasikala, J. Mater. Sci. Technol 25, 85 (2009)Google Scholar
  5. 5.
    C.M. Lampert, C.G. Granqvist, Large-Area Chromogenics: Materials and Devices for Transmittance Control Vol IS4 (SPIE Optical Engineering Press, Bellingham, 1990)Google Scholar
  6. 6.
    P. Manoj, Y. Zahira, N. Binitha, G. Anila, T. S. Masrinda, Superlattice Microstruct. 64, 15 (2013)Google Scholar
  7. 7.
    M. Pudukudy, Z. Yaakob, Chem. Pap. 68, 1087 (2014)Google Scholar
  8. 8.
    S.G. Kandalkar, C.D. Lokhande, R.S. Mane, S.-H. Han, Appl. Surf. Sci. 253, 3952 (2007)ADSGoogle Scholar
  9. 9.
    C.G. Granqvist, Materials science for Solar Energy Conversion System (Pergamon Press, Oxford, 1991)Google Scholar
  10. 10.
    C. E. Barrera, G. T. Viveros, A. Avila, P. Quintana, M. Morales, N. Batina, Thin Solid Films, 346, 138 (1999).ADSGoogle Scholar
  11. 11.
    A. Avila, E. Barrera, L. Huerta, S. Muhl, Sol. Energy Mater. Sol. Cell. 82, 269 (2004).Google Scholar
  12. 12.
    F. Voges, H. de Gronckel, C. Osthöver, R. Schreiber, P. Grünberg, J. Magn. Magn. Mater. 190, 183 (1998).ADSGoogle Scholar
  13. 13.
    A.U. Mane, S.A. Shivashankar, J. Cryst. Growth 254, 368 (2003)ADSGoogle Scholar
  14. 14.
    M. Melzer, C.K. Nichenametla, C. Georgi, H. Lang, S.E. Schulz, Low-temperature chemical vapor deposition of cobalt oxide thin films from a dicobaltatetrahedrane precursor. RSC Adv. 7, 50269–50278 (2017)Google Scholar
  15. 15.
    C. Guyon, A. Barkallah, F. Rousseau, K. Giffard, D. Morvan, M. Tatoulian, Surf. Coatings Technol. 206, 1673 (2011)Google Scholar
  16. 16.
    C. Hu, S. Xing, J. Qu, H. He, J. Phys. Chem. C 112, 5978 (2008)Google Scholar
  17. 17.
    X.D. Lou, J. Han, W.F. Chu, X.F. Wang, Q.T. Cheng, Mater. Sci. Eng. B 137 (2007)Google Scholar
  18. 18.
    M.A. Paranjape, A.U. Mane, A.K. Roychoudhary, K. Shalini, S.A. Shivshankar, B. Chakravarty, Thin Solid Films 413, 8 (2002)ADSGoogle Scholar
  19. 19.
    A.U. Mane, S.A. Shivshanker, J. Cryst. Growth 254, 368 (2003)ADSGoogle Scholar
  20. 20.
    A. Elsakhi, S.M. Hamed, M.A. Siddig, A.A. Elbadawi, A.I. Mohamed, M. Elhadi, Int. J. Sci. Res. Innov. Tech. 2(5), 112–116 (2015)Google Scholar
  21. 21.
    Q.Q. Lan, X.J. Zhang, X. Shen, H.W. Yang, H.R. Zhang, X.X. Guan, W. Wang, Y. Yao, Y.G. Wang, Y. Peng, B.G. Liu, J.R. Sun, R.C. Yu, Phys. Rev. Mater. 1, 024403 (2017)Google Scholar
  22. 22.
    M. Kalyani, N.R. Emerson, Int. J. Pure Appl. Phys. 14(2), 115–124 (2018)Google Scholar
  23. 23.
    T. Yoshino, N. Baba, Solar Energy Mater. Solar Cells 39, 391–397 (1995)Google Scholar
  24. 24.
    S.M. Jogade, P.S. Joshi, B.N. Jamadar, D.S. Sutrave, J. Nano-Electron. Phys 3, 203–211 (2011)Google Scholar
  25. 25.
    V. Patil, P. Joshi, M. Chougule, S. Sen, Soft Nanosc. Lett 2, 1–7 (2012)Google Scholar
  26. 26.
    M. Lenglet, J. Lopitaux, L. errier, F. chartier, J. E. koenig, F. Nkeng, G. Poillerat, J. DE Phys. I, 3, 477 (1993).Google Scholar
  27. 27.
    G.S. Kandalkara, D.S. Dhawaleb, C.-K. Kima, C.D. Lokhande, Synth. Met. 160, 1299 (2010)Google Scholar
  28. 28.
    A.J. Gaddsden, Infrared Spectra of Minerals and Related Inorganic Compound, 1st edn. (Butterworth, London, 1975)Google Scholar
  29. 29.
    P. Nkeng, J. F. Koening, J. L. Gautier, P. Chartier, G. Poillerat, J. Electroanal. Chem. 402, 81(1996).Google Scholar
  30. 30.
    S.R. Ahmed, P. Kofinas, J. Magnet. Magnet. Mater 288, 219 (2005)ADSGoogle Scholar
  31. 31.
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compds. 499, 231 (2010)Google Scholar
  32. 32.
    R.Vijaya Kumara, A.V. Anupamaa, R. Kumara, H.K. Choudharya, V.B. Khopkara, G. Aravindb, B. Sahoo, Cera. Int. 44(17), 20708 (2018)Google Scholar
  33. 33.
    L. Kumar, P. Kumar, V. Kuncser, S. Greculeasa, B. Sahoo, M. Kar, Mater. Chem. Phys. 211, 54 (2018)Google Scholar
  34. 34.
    D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850 (2003)ADSGoogle Scholar
  35. 35.
    P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 2, 98–100 (1918)Google Scholar
  36. 36.
    D.-Y. Kim, S.-G. Lee, Y.-K. Park, S.J. Park, Variation of the preferred orientation with thickness in barium titanate thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 36(1), 7307–7311 (1997)ADSGoogle Scholar
  37. 37.
    . A. Matsumuro, T. Hayashi, M. Muramatsu, Y. Takahashi, M. Kohzaki, K. Yamaguc, Variation in preferred orientations of tin thin films prepared by ion beam assisted deposition. Mater. Sci. Res. Int. 7(1), 1–6 (2001)Google Scholar
  38. 38.
    C. Suryanarayana, G.M. Norton, X-ray Diffraction a Practical Approach (Plenum Press, New York, 1998)Google Scholar
  39. 39.
    Z.N. Kayani, T. Afzal, S. Riaz, S. Naseem, J. Alloys Compds 606, 177 (2014)Google Scholar
  40. 40.
    C.U. Mordi, M.A. Eleruja, B.A. Taleatu, G.O. Egharevba, A.V. Adedeji, O.O. Akinwunmi, B. Olofinjana, C. Jeynes, E.O.B. Ajayi, J. Mater. Sci. Technol. 25, 85 (2009)Google Scholar
  41. 41.
    A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, H. Erguig, J. Alloys Compd. 509, 9183 (2011)Google Scholar
  42. 42.
    R. Drasovean, R. Monteiro, E. Fortunato, V. Musat, J. Non-cryst. Sol. 352, 1479 (2006)ADSGoogle Scholar
  43. 43.
    L.D. Kadam, P.S. Patil, Mater. Chem. Phys., 68, 225 (2001).Google Scholar
  44. 44.
    A. Gulino, P. Dapporto, P. Rossi, I. Fragalà, Chem. Mater 15(20), 3748 (2003)Google Scholar
  45. 45.
    A.V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487 (2006)ADSGoogle Scholar
  46. 46.
    K.J. Kim, Y.R. Park, Solid State Commun. 127, 25 (2003)ADSGoogle Scholar
  47. 47.
    M. Pandiaraman, N. Soundararajan, C. Vijayan, J. Ovon. Res. 7(1), 21 (2011)Google Scholar
  48. 48.
    V.P. Bhatt, K. Gireesan, C.F. Desai, Cry. Res. Tech. 24, 187 (1989)Google Scholar
  49. 49.
    P. Khatri, S.M. Vyas, D. Shah, P. Patel, M.P. Jani, G.R. Pandya, Int. J. Phys. Appl. 2(3), 95 (2010)Google Scholar
  50. 50.
    J.B. Tracy, D.N. Weiss, D.P. Dinega, M.G. Bawendi, Phys. Rev. B 72(6), 064404 (2005)ADSGoogle Scholar
  51. 51.
    S. Ingvarssona, G. Xiaoa, S.S.P. Parkinb, W.J. Gallagher, J. Magn. Magn. Mater. 251, 202 (2002)ADSGoogle Scholar
  52. 52.
    V.A. Anupama, W. Keune, B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017)ADSGoogle Scholar
  53. 53.
    V. Anupama, V.B. Khopkar, V. Kumaran, B. Sahoo, Phys. Chem. Chem. Phys. 20, 20247 (2018)Google Scholar
  54. 54.
    R. Bhowmik, V. Vengidusamy, A. Poddar, J. Alloys Compd. 578, 585 (2018)Google Scholar
  55. 55.
    L. Neel, J. Phys. Radium 17, 250 (1956)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zohra Nazir Kayani
    • 1
    Email author
  • Saliha Arshad
    • 1
  • Saira Riaz
    • 2
  • Shahzad Naseem
    • 2
  1. 1.Lahore College for Women UniversityLahorePakistan
  2. 2.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations