Applied Physics A

, 125:191 | Cite as

Magnetic properties of Co and Ti co-doped strontium hexaferrite prepared by sol–gel method

  • Min ZhangEmail author
  • Qiangchun Liu
  • Guangping ZhuEmail author
  • Shitao Xu


The Co and Ti co-doped SrFe12O19 hexaferrites have been successfully synthesized via the sol–gel method. The X-ray diffraction patterns demonstrate that all doped samples are single-phase hexagonal crystal confirmed by Rietveld refinement. The results of field-emission scanning electronic microscopy reveal that the particle sizes increase obviously with increasing Co–Ti substitution rate. It can be clearly observed that the magnetic properties can be effectively tuned by the partial substitution of Fe with Co and Ti. The magnetization measurement manifests both saturation magnetization and coercivity drop with increasing Co–Ti concentration. Specifically, the coercivity falls substantially from about 1697 to 20 Oe with only a little decrease in the saturation magnetization as x increases from 0.5 to 1.5. The results indicate that low-doped Co–Ti substitution rates (x) make hexaferrites suitable for high density and perpendicular recording technology. It is worthy to note that the Co–Ti substituted samples can gradually turn the magnetocrystalline anisotropy from uniaxial to planar, and the transition point is near x = 1.5, which is beneficial to the formation of a conical magnetic structure to induce electric polarization. It is expected that Co–Ti co-doped hexaferrite Sr(CoTi)1.5Fe9O19 may be potential candidates for application based on the magnetoelectric devices.



This work was financially supported by the Foundation of Educational Commission of Anhui Province (KJ2018A0393 and KJ2017A844), and the Key Foundation of Educational Commission of Anhui Province (KJ2016SD53).


  1. 1.
    Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    L.Y. Wang, D.H. Wang, Q.Q. Cao, Y.X. Zheng, H.C. Xuan, J.L. Gao, Y.W. Du, Sci. Rep. 2, 223 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Mohebbi, K. Ebnabbasi, C. Vittoria, J. Appl. Phys. 113, 17C710 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Feng, B. Shao, J. Wu, X. Zuo, J. Appl. Phys. 113, 17D909 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Topkaya, I. Auwal, A. Baykal, Ceram. Int. 42, 16296–16302 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Amir, H. Sözeri, A.D. Korkmaz, A. Baykal, Ceram. Int. 44, 988–992 (2018)CrossRefGoogle Scholar
  7. 7.
    N. Qureshi, M.D. Ruiz-Martín, I. Puente-Orench, M.T. Fernández-Díaz, A.M. Balbashov, V.Y. Ivanov, V. Skumryev, A.A. Mukhin, Phys. Rev. B 98, 094411 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    R.C. Pullar, Prog. Mater Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Ounnunkad, Solid State Commun. 138, 472–475 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, J. Magn. Magn. Mater. 320, 2746–2751 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B.T. Shirk, W.R. Buessem, J. Appl. Phys. 40, 1294–1296 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    D.A. Vinnik, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, L.S. Mashkovtseva, A.V. Trukhanov, S.V. Trukhanov, S. Nemrava, B. Blaschkowski, R. Niewa, J. Magn. Magn. Mater. 470, 97–100 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    K.M.U. Rehman, M. Riaz, X.S. Liu, M.W. Khan, Y.J. Yang, K.M. Batoo, S.F. Adil, M. Khan, J. Magn. Magn. Mater. 474, 83–89 (2019)ADSCrossRefGoogle Scholar
  14. 14.
    C.C. Liu, X.C. Kan, F. Hu, X.S. Liu, S.J. Feng, J.Y. Hu, W. Wang, K.M. Ur Rehman, M. Shezad, C. Zhang, H.H. Li, S.Q. Zhou, Q.Y. Wu, J. Alloys Compd. 784, 1175–1186 (2019)CrossRefGoogle Scholar
  15. 15.
    W. Zhang, Y. Bai, X. Han, L. Wang, X.F. Lu, L.J. Qiao, J. Alloy. Compd. 546, 234–238 (2013)CrossRefGoogle Scholar
  16. 16.
    G.B. Teh, D.A. Jefferson, J. Solid State Chem. 167, 254–257 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    F. Tabatabaie, M.H. Fathi, A. Saatchi, A. Ghasemi, J. Alloy. Compd. 474, 206–209 (2009)CrossRefGoogle Scholar
  18. 18.
    M.A. Almessiere, Y. Slimani, A. Baykal, Ceram. Int. 44, 9000–9008 (2018)CrossRefGoogle Scholar
  19. 19.
    W.F. Xu, J. Yang, W. Bai, Y.Y. Zhang, K. Tang, C.-G. Duan, X.D. Tang, J.H. Chu, J. Appl. Phys. 117, 17D909 (2015)CrossRefGoogle Scholar
  20. 20.
    S.Y. An, I.-B. Shim, C.S. Kim, J. Appl. Phys. 91, 8465 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    X. Batlle, X. Obradors, J. Rodríguez-Carvajal, M. Pernet, M.V. Cabañas, M. Vallet, J. Appl. Phys. 70, 1614–1623 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    M.V. Cabanas, J.M. Gonzalez-Calbet, J. Rodriguez-Carvajal, M.V. Regi, J. Solid State Chem. 111, 229–237 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    J. Kreisel, H. Vincent, F. Tasset, M. Pate, J.P. Ganne, J. Magn. Magn. Mater. 224, 17–29 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Williams, J. Adetunji, M. Gregori, J. Magn. Magn. Mater. 220, 124–128 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    D. Zhang, J. Li, H. Zhang, Y. Wu, Q. Li, G. Ma, Appl. Phys. A 122, 306 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R. Sai, M. Sato, S. Takeda, S. Yabukami, M. Yamaguchi, J. Magn. Magn. Mater. 459, 49–56 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    C.M. Fang, F. Kools, R. Metselaar, G.d. With, R.A.d. Groot, J. Phys. Condens. Matter 15, 6229–6237 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electronics InformationHuaibei Normal UniversityHuaibeiPeople’s Republic of China

Personalised recommendations